1、安装python环境
1.1、下载python软件
wget https://www.python.org/ftp/python/3.9.16/Python-3.9.16.tgz
1.2、安装依赖包
yum install gcc gcc-c++ glibc-devel glibc zlib-devel zlib openssl-devel openssl sqlite-devel readline-devel bzip2-devel libffi-devel -y
1.3、编译安装软件
tar xvf Python-3.9.16.tgz && cd Python-3.9.16 && ./configure --prefix=/usr/local/Python-3.9.16 --with-ssl && make && make install
ln -s /usr/local/Python-3.9.16 /usr/local/python3
1.4、配置Python动态链接库
cat >/etc/ld.so.conf.d/Python-3.9.16.conf <<'EOF' /usr/local/python3/lib/ EOF ldconfig
1.5、配置环境变量
cat > /etc/profile.d/Python-3.9.16.sh <<'EOF' #!/bin/bash export PYTHON_HOME=/usr/local/python3 export PATH=$PATH:${PYTHON_HOME}/bin EOF source /etc/profile.d/Python-3.9.16.sh
1.6、配置pip下载源
cd ~ && mkdir .pip && cat > .pip/pip.conf <<'EOF' [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple [install] trusted-host=pypi.douban.com EOF
1.7、配置虚拟环境
1.7.1、安装软件
pip3 install virtualenv pip3 install --no-deps stevedore virtualenvwrapper
1.7.2、配置环境变量
mkdir /data//venv echo 'export WORKON_HOME=/data/venv' >> .bashrc echo 'export VIRTUALENVWRAPPER_PYTHON=/usr/local/python3/bin/python3' >> .bashrc echo 'export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/python3/bin/virtualenv' >> .bashrc echo 'source /usr/local/python3/bin/virtualenvwrapper.sh' >> .bashrc source .bashrc 注意:virtualenv 和 virtualenvwrapper.sh 的路径位置
1.7.3、创建虚拟环境
mkvirtualenv -p python3 flask_env pip install flask prometheus_client pip list
# 关于虚拟环境管理,请看文章:https://www.cnblogs.com/ygbh/p/17305785.html
2、部署Flask项目代码
2.1、拷贝代码
mkdir /opt/my_metrics && cd /opt/my_metrics/ cat > my_metric.py <<'EOF' # -*- coding: utf-8 -*- """ File Name : flask_metric Description : Author : Administrator date : 2023/4/10 Change Activity : 2023/4/10: """ from prometheus_client import Counter, Summary, start_http_server from wsgiref.simple_server import make_server from flask import Flask, jsonify app = Flask(__name__) request_time = Summary('request_processing_seconds', 'Time spent processing request') # 请求时间的记录 counter_time = Counter('request_count', 'Total request cout of the host', ['method', 'endpoint']) # 请求数量+标签统计 counter_time.labels('get', '/').inc() @app.route('/metrics') @request_time.time() def requests_count(): counter_time.labels('get', '/').inc() return jsonify({'return': 'success OK!'}) if __name__ == '__main__': start_http_server(8000) httpd = make_server('0.0.0.0', 8001, app) httpd.serve_forever() EOF
2.2、进入虚拟环境跑起代码
(flask_env) [root@register ~]# python3 /opt/my_metrics/my_metric.py & # 注意:本代码,开启两个端口:8000和8001 8000 是prometheus_client端口,用于被prometheus捉取数据的 8001 是flask接口,用到我们测试访问次数递增之用。
2.3、访问prometheus_client端口8000
(flask_env) [root@register ~]# curl http://192.168.10.33:8000/metric # HELP python_gc_objects_collected_total Objects collected during gc # TYPE python_gc_objects_collected_total counter python_gc_objects_collected_total{generation="0"} 105.0 python_gc_objects_collected_total{generation="1"} 280.0 python_gc_objects_collected_total{generation="2"} 0.0 # HELP python_gc_objects_uncollectable_total Uncollectable object found during GC # TYPE python_gc_objects_uncollectable_total counter python_gc_objects_uncollectable_total{generation="0"} 0.0 python_gc_objects_uncollectable_total{generation="1"} 0.0 python_gc_objects_uncollectable_total{generation="2"} 0.0 # HELP python_gc_collections_total Number of times this generation was collected # TYPE python_gc_collections_total counter python_gc_collections_total{generation="0"} 74.0 python_gc_collections_total{generation="1"} 6.0 python_gc_collections_total{generation="2"} 0.0 # HELP python_info Python platform information # TYPE python_info gauge python_info{implementation="CPython",major="3",minor="9",patchlevel="16",version="3.9.16"} 1.0 # HELP process_virtual_memory_bytes Virtual memory size in bytes. # TYPE process_virtual_memory_bytes gauge process_virtual_memory_bytes 4.66591744e+08 # HELP process_resident_memory_bytes Resident memory size in bytes. # TYPE process_resident_memory_bytes gauge process_resident_memory_bytes 2.4743936e+07 # HELP process_start_time_seconds Start time of the process since unix epoch in seconds. # TYPE process_start_time_seconds gauge process_start_time_seconds 1.6811862109e+09 # HELP process_cpu_seconds_total Total user and system CPU time spent in seconds. # TYPE process_cpu_seconds_total counter process_cpu_seconds_total 0.19 # HELP process_open_fds Number of open file descriptors. # TYPE process_open_fds gauge process_open_fds 7.0 # HELP process_max_fds Maximum number of open file descriptors. # TYPE process_max_fds gauge process_max_fds 1024.0 # HELP request_processing_seconds Time spent processing request # TYPE request_processing_seconds summary request_processing_seconds_count 0.0 request_processing_seconds_sum 0.0 # HELP request_processing_seconds_created Time spent processing request # TYPE request_processing_seconds_created gauge request_processing_seconds_created 1.6811862113408284e+09 # HELP request_count_total Total request cout of the host # TYPE request_count_total counter request_count_total{endpoint="/",method="get"} 1.0 # HELP request_count_created Total request cout of the host # TYPE request_count_created gauge request_count_created{endpoint="/",method="get"} 1.681186211340873e+09
2.4、编写自动随机访问flask 8000的端口的shell脚本
cd /opt/my_metrics/ && cat > curl_metrics.sh<<'EOF' #!/bin/bash # 获取随机数 while true do sleep_num=$(($RANDOM%5+1)) curl_num=$(($RANDOM%50+1)) for c_num in `seq $curl_num` do curl -s http://192.168.10.33:8001/metrics >>/dev/null 2>&1 done sleep $sleep_num done EOF
3、将自定义metric增加到prometheus
3.1、配置prometheus.yml
]# vi /data/server/prometheus/etc/prometheus.yml scrape_configs:- job_name: "prometheus" static_configs: - targets: ["localhost:9090"] - job_name: "node_exporter" static_configs: - targets: ['192.168.10.29:9100','192.168.10.30:9100']
# 增加如下配置 - job_name: "custom_metric" static_configs: - targets: ['192.168.10.33:8000']
3.2、检查语法是否正常
]# promtool check config /data/server/prometheus/etc/prometheus.yml Checking /data/server/prometheus/etc/prometheus.yml SUCCESS: /data/server/prometheus/etc/prometheus.yml is valid prometheus config file syntax
3.3、重启prometheus服务
systemctl restart prometheus
3.4、到web查询target状态
显示正常
3.5、查询指标值
request_count_total{instance="192.168.10.33:8000"} 在prometheus上面可以看到正常的数据收集。
4、总结
metric基础 - prometheus管理数据的核心要点 - 必须由服务端提供标准接口 定制metric - 借助于接口开发模块进行定制开发 prometheus集成 - job配置、重启服务、数据监测
标签:58,自定义,python,request,metrics,process,prometheus,gc,total From: https://www.cnblogs.com/ygbh/p/17305663.html