首页 > 其他分享 >垃圾邮件过滤

垃圾邮件过滤

时间:2023-04-09 20:13:35浏览次数:47  
标签:垃圾邮件 filePath list 过滤 file TfidfVectorizer cutWords 分词

基于jieba、TfidfVectorizer、LogisticRegression的垃圾邮件分类 - 简书 (jianshu.com)

学习这篇文章中遇到的一些问题。

1、

“建议读者安装anaconda,这个集成开发环境自带了很多包。
到2018年9月27日仍为最新版本的anaconda下载链接: https://pan.baidu.com/s/1pbzVbr1ZJ-iQqJzy1wKs0A 密码: g6ex
官网下载地址:https://repo.anaconda.com/archive/Anaconda3-5.2.0-Windows-x86_64.exe
下面代码的开发环境为jupyter notebook,使用在jupyter notebook中的截图表示运行结果。”   所以我也去安装了anaconda,并在网络上搜索了安装教程:Anaconda超详细安装教程(Windows环境下)_windows安装conda_菜鸟1号!!的博客-CSDN博客

 这里我也按教程搜索了Anaconda Navigator,但我并没有出现如上述一样成功打开的页面,反而一直停在load application,进不到正常页面。

 于是百度搜索解决办法,找到一文解决安装Anaconda卡在Loading applications的问题!_安装anaconda卡住不动_研行笔录的博客-CSDN博客,用此博主的办法成功解决问题!

在此过程中我还尝试了其他博主文章中提到的办法但是均没有解决:

(1)anaconda初始化报错:Anaconda:There is an instance of anaconda navigator already running error 和 卡在loading_anaconda instance_希鲁鲁克的樱花的博客-CSDN博客

 修改了提到的文件,但是没有用,但是也学到一个小tip,那就是在pycharm中使用crtl+f可以实现搜索某个语句。

(2)关于Anaconda navigator一直显示loading......的问题_python_ChanicaBang-DevPress官方社区 (csdn.net)

这个方法也并没有用。

还有一个问题:there is an instance of anaconda navigator

 

解决办法:启动Anaconda时,弹出There is an instance of anaconda navigator already running error_anaconda显示已经运行_Acheng1011的博客-CSDN博客

1.数据下载

数据文件下载链接: https://pan.baidu.com/s/1kqOFq8Ou_2D3fIKp0l62qQ 提取码: eu5x
压缩文件trec06c.zip当中含有64000多个包含邮件内容的文本文件。

2.数据观察

查看文件需要安装Notepad++,安装软件后鼠标右击文件,从Notepad++中打开。

由于我对trec06c数据集很了解了,所以忽略这一部分。

3.2.3 定义getFilePathList2函数

第3种是定义getFilePathList2函数,函数中主要使用os.walk方法,获取目录下所有的文件。
os.walk方法的返回结果的数据类型是列表,列表中的元素的数据类型是元组。“元组可以存储任意数量、任意类型的数据元素,如(1, 2, 3, 'apple', 'banana', 'cherry')”
元组的第1个元素,即walk[0]为表示路径的字符串;
元组的第2个元素为第1个元素所表示路径下的文件夹;
元组的第3个元素,即walk[2]为第1个元素所表示路径下的文件;

 1 import os
 2 import time
 3 
 4 def getFilePathList2(rootDir):
 5     filePath_list = []
 6     for walk in os.walk(rootDir):
 7         part_filePath_list = [os.path.join(walk[0], file) for file in walk[2]]
 8         filePath_list.extend(part_filePath_list)
 9     return filePath_list
10 
11 startTime = time.time()
12 filePath_list = getFilePathList2('./trec06c/data')
13 print(len(filePath_list))
14 print(filePath_list[0])
15 print(filePath_list[1])
16 print('function use %.2f seconds' %(time.time()-startTime))

上面一段代码的运行结果如下:

64620
./trec06c/data\000\000
./trec06c/data\000\001
function use 0.64 seconds

ChatGPT中关于元组的介绍:

 

 

 我自己的运行结果也差不多。此函数的作用是得到一个列表,存储每封邮件的路径。

3.3 邮件内容

3.3.1 加载邮件内容

本文作者在此项目开发中,采用快速迭代开发策略。
第1个迭代版本丢弃邮件头,内容作为特征,就取得98%左右的准确率。

邮件内容列表赋值给变量mailContent_list,代码如下:

1 mailContent_list = []
2 for filePath in filePath_list:
3     with open(filePath, errors='ignore') as file:
4         file_str = file.read()
5         mailContent = file_str.split('\n\n', maxsplit=1)[1] 
6         mailContent_list.append(mailContent)
7 print(mailContent_list[1])

打开分享的文件发现里面还有英文,就不用他的了。

分词时import jieba出错了,显示没有jieba这个模块:

 

由于是头天的晚上出现的这个错误,在网上搜索了一下,发现可以下载jieba库,于是也我打算这样做,但是刚好电脑没电了,于是就没弄。

第二天起来就又搜索了一下这个问题,看了此博主的博客 在jupyter安装jieba出错ModuleNotFoundError: No module named ‘jieba‘的解决办法-CSDN博客 提到的方法5:

 于是我发现这个方法我在头天晚上就试过了,但是出错了

 

 但是我又按照它的提示,通过python -m pip install --upgrade pip升级pip,但是又出错了

 这里虽然告诉我了错误原因,但我并没有去百度这个错误了。

而是去看没有jieba库的解决办法了,又看到这个博主 python3安装jieba成功,但是导入仍然错误 - 简书 (jianshu.com)

 

 于是我也就按照他输入了!pip3 install jieba,

 提示有jieba库,不过它既然有这个库为什么会提示我这个错,到现在我已经忘记我为什么会出现这个错误了,好像自己突然就行了。

不过至此我又发现一个问题就是对一封邮件分完词后,会出现把空格也当成词分进去了:

 于是我好奇为什么会这样呢,往上看代码发现,提取的邮件正文内容中并没有把空格全部去:

 于是分词的时候就出现错误了。

现在开始想解决办法,想到我之前看到的一篇文章里有提到他是如何去空格的,看了一下:

 把空格去掉是这种方式,但是又无法下手,于是去chatGPT搜索了一下这个语句:[re.sub('\s+', '', k) for k in mailContent_list]的作用,解释如下:

 发现这个语句的作用是把多个空格替换为单个空格,这跟我去掉所有空格的理念不符啊,于是再结合另一个博主提到的replace(" ",""),所以我想到

[re.sub('\s+', ' ', k) for k in mailContent_list]中' '的这个替换为'':

 发现就把多余的空格去掉了,好耶nice!

但是在操作中我以为改了结果没改,然后又运行一遍发现还是有空格,以为我想错了,检查一遍才发现没去掉。

关于语句:mailContent_list[:3000]的作用我不太会,所以搜索了一下:

“从上面2种方法运行时间的对比可以看出,判断1个元素是否在集合中比判断1个元素是否在列表中效率要高。
判断1个元素是否在集合中,使用hash算法,时间复杂度为O(1);
判断1个元素是否在列表中,使用循环遍历对比的方法,时间复杂度为O(n)。
在此次分词结果去除停顿词的实践中,使用判断1个元素是否在集合中的方法,效率是判断1个元素是否在列表中的3倍左右。
64000多篇邮件分词去除停顿词共花费350秒左右,即6分钟左右。”   64000多封邮件我并没有花时间去试。

4.3 保存分词结果

第1行代码导入pickle库
第3行代码open方法中的'wb'表示文件以二进制形式写入
第4行代码调用pickle.dump方法将python中的对象保存到文件中。

1 import pickle
2 with open('cutWords_list.pickle', 'wb') as file:
3     pickle.dump(cutWords_list, file)

4.4 加载分词结果

本文作者提供已经完成的分词结果,下载链接: https://pan.baidu.com/s/1bjPgrsXKkovdgbdpzNXOmQ 提取码: x71b
压缩文件cutWords_list.zip下载完成后,其中的文件cutWords_list.pickle解压到代码文件同级目录

因为之前已经下载过这个文件,并且已经发送到QQ文件助手,所以回到文件助手中去找文件,但是提示文件发送一半,所以我又点了一下接着发送,同时我也在代码运行了

等QQ下载完后,准备复制到目录下,发现已经有了,还是代码运行比较快。

为什么要把分完后的词写入一个文件呢,我猜是分完的词要用到,如果每次用代码现分太麻烦了,所以写入文件后面只调用就可以了。

于37:55开始运行,大概42:50运行完,也差不多六分钟左右,跟博主差不多。

想看一下文件里的内容,于是输出第20000:

import pickle
with open('cutWords_list.pickle', 'rb') as file:
    cutWords_list = pickle.load(file)
print(cutWords_list[20000]

但是却发现有一些奇怪的东西出现在里面,这些可以忽略吗,不能忍受,所以我要想办法把它们去掉! 由于列表的下标是从0开始,所以我输出的是第20001封邮件的分词结果,20001/300=60......201 就是data文件夹下059/200,打开之后发现更离谱,跟上面的分词结果更不像,哈哈哈。还不如199打开的内容,因为其实下面的图显示的内容是199文件下的内容:

 通过与分词结果对比发现好像不太一样,不管了。下面加了一个去掉所有非中文字符:

运行结果如下:

 

 没有奇怪的字符了。bingo!

 于是再次写入pickle文件,于11:40运行,17:10结束,差不多6分钟。

运行结果如下:

 

 其实分词这一步我也弄过好多遍了,没什么问题,重要的是下面的。

5.TfidfVectorizer模型

调用sklearn.feature_extraction.text库的TfidfVectorizer方法实例化模型对象。
TfidfVectorizer方法需要3个参数。
第1个参数是分词结果,数据类型为列表,其中的元素也为列表;
第2个关键字参数min_df是词频低于此值则忽略,数据类型为int或float;
第3个关键字参数max_df是词频高于此值则忽略,数据类型为Int或float。
查看TfidfVectorizer方法的更多参数用法,官方文档链接:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

1 from sklearn.feature_extraction.text import TfidfVectorizer 
2 tfidf = TfidfVectorizer(cutWords_list, min_df=100, max_df=0.25)

我发现文章在刚开始都很认真,但后面就慢慢不认真了。

6.1 特征矩阵

“第1行代码调用TfidfVectorizer对象的fit_transform方法获得特征矩阵;
第2行代码打印查看TfidfVectorizer对象的词表大小;
第3行代码查看特征矩阵的形状。”

1 X = tfidf.fit_transform(mailContent_list)
2 print('词表大小:', len(tfidf.vocabulary_))
3 print(X.shape)

输出结果为下图:

但是我觉得这个结果好奇怪啊,怎么可能只有44个特征词。于是我去搜了一下tfidf.vocabulary_

博客园中编辑图片想要删除的话,选中之后用delete键删除,backspace键总是跳来跳去,很烦。

我觉得作者对TfidfVectorizer的用法是错误的,正确的应该是上图的样子:

 1 # 准备输入的文本数据,我们准备的文本数据是cutWords_list 
 2 corpus = ['This is the first document.',
 3      'This is the second document.',
 4      'And this is the third one.',
 5      'Is this the first document?',]
 6 # 实例化TfidfVectorizer 类
 7 vectorizer = TfidfVectorizer()
 8 # 将文本数据转化为向量表示
 9 X = vectorizer.fit_transform(corpus)

但是我自己生成的cutWords_list中的词格式是['你好','公司',...,]这种,但是方法fit_transform()的参数不能是这种,而是['你好 公司...']这种以空格连接的。那么这种格式怎么做到呢,可以用方法

[' '.join(text) for text in cutWords_list]来做到,即将列表中的元素以空格连接。

 

 加入这样一段话:cutWords_list = [' '.join(text) for text in cutWords_list]

 

根据上面的话,下面的语句就不会出错了:

1 from sklearn.feature_extraction.text import TfidfVectorizer
2 tfidf = TfidfVectorizer(token_pattern=r"(?u)\b\w\w+\b", min_df=100, max_df=0.25)
3 X = tfidf.fit_transform(cutWords_list)

6.2 预测目标值

第1行代码导入sklearn.preprocessing库的LabelEncoder类;
第3行代码调用LabelEncoder()实例化标签编码对象;
第4行代码调用标签编码对象的fit_transform方法获取预测目标值。

1 from sklearn.preprocessing import LabelEncoder
2 labelEncoder = LabelEncoder()
3 y_encode = labelEncoder.fit_transform(y)

看到这个代码觉得有些陌生,这个y我好像并没有见过,但是回去看作者的评论可以发现是有的:

1 with open('./trec06c/full/index') as file:
2     y = [k.split()[0] for k in file.readlines()]

 

这个y_encode的结果就是0,1。

即将A,B,C变成整数0,1,2;那么数字0就表示了类别A。

 

7.逻辑回归模型

7.1 模型训练

最后1行代码ndarray对象的round方法表示小数点保留位数。

1 from sklearn.linear_model import LogisticRegressionCV
2 from sklearn.model_selection import train_test_split
3 train_X, test_X, train_y, test_y = train_test_split(X, y_encode, test_size=0.2)
4 logistic_model = LogisticRegressionCV()
5 logistic_model.fit(train_X, train_y)
6 logistic_model.score(test_X, test_y).round(4)

 

输出结果为0.9917。

到目前为止已经完全做出来了,作者后面还有一些步骤。

 

 

 

 

 

标签:垃圾邮件,filePath,list,过滤,file,TfidfVectorizer,cutWords,分词
From: https://www.cnblogs.com/liuyujie-zhang/p/17299710.html

相关文章

  • 爬虫最后一天,爬取到的数据存到mysql中,爬虫和下载中间件、加代理、cookie、header、se
    爬到的数据存到mysql中classFirstscrapyMySqlPipeline:defopen_spider(self,spider):print('我开了')self.conn=pymysql.connect(user='root',password="",host='127.0.0.1......
  • (字节过滤流)利用 Data,完成一下操作
    (1)往当前目录下“test.dat”的文件中写入一个long类型的数值:10000L(2)从该文件中读出数值,并把该数值加1之后,再存回文件中。packageio.homework;importjava.io.*;publicclassq19{publicstaticvoidmain(String[]args){try(OutputStreamos=......
  • Ioc底层核心原理-组件扫描过滤器
              ......
  • kettle从入门到精通 第十课 kettle switch/case、过滤记录、数值范围
    1、java代码里面有ifelse、switch-case等流程控制,kettle也有相应控件。下图便用到switch/case、过滤记录、数值范围控件。 2、 switch/case步骤1)步骤名称:可自定义2)switch字段:需要判断的字段,从前置步骤中选择3)使用字符串包含比较:如果勾选效果和java里面的contains一样,否则......
  • vue之过滤、筛选功能的实现
    目录需求代码需求给定一个列表(模拟数据),根据用户输入,自动筛选输入的内容并输出到屏幕代码<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"><title>Title</title><scriptsrc="./js/jQuery.js"></......
  • NestJs 异常过滤器
    文档:https://docs.nestjs.cn/9/exceptionfilters实现新建文件common下面新建filter.ts实现让我们创建一个异常过滤器它负责捕获作为HttpException类实例的异常并为它们设置自定义响应逻辑为此,我们需要访问底层平台Request和Response我们将访问Request对象,以便提取原......
  • 【过滤器设计模式详解】C/Java/JS/Go/Python/TS不同语言实现
    简介过滤器模式(FilterPattern)或标准模式(CriteriaPattern),是一种结构型模式。这种模式允许使用不同的标准条件来过滤一组对象,并通过逻辑运算的方式把各条件连接起来,它结合多个标准来获得单一标准。例子将创建一个Person对象、Criteria接口和实现了该接口的实体类,来过滤Perso......
  • 微信公众号 过滤 typescript cheerio
    E:\公众号文章采集\fi_filter_过滤器\src\exact_新浪博客手机版提取连接.jsconstfs=require('fs');constjsdom=require('jsdom');const{JSDOM}=jsdom;fs.readdir('./html',function(err,files){files.forEach((file)=>{fs.read......
  • Redis布隆过滤器的原理和安装使用
    前言本文讲述布隆过滤器(RedisBloom)的基本原理和安装使用。RedisBloom是什么?RedisBloom是Redis中过滤器模块,可以用来判断值是否存在,常用来解决缓存穿透问题。查询数据时,先用RedisBloom判断数据是否存在,不存在则直接返回,存在则从缓存/数据库获取后返回。比如查询接......
  • 用前缀树实现中文敏感词过滤器
    前言本文代码实现一个中文的敏感词过滤器,预先将准备好的敏感词写入前缀树数据结构中实现快速检索,并且节省内存。一般用于检查注册用户名称、言论是否包含不文明的词汇。可以判断内容是否包含敏感词;找出内容中的敏感词;将内容中的敏感词替换成设置的字符。运行环境代码使用了JDK......