首页 > 其他分享 >Go 语言切片是如何扩容的?

Go 语言切片是如何扩容的?

时间:2023-04-09 17:36:00浏览次数:42  
标签:扩容 after newcap 容量 cap 切片 Go append

原文链接: Go 语言切片是如何扩容的?

在 Go 语言中,有一个很常用的数据结构,那就是切片(Slice)。

切片是一个拥有相同类型元素的可变长度的序列,它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。

切片是一种引用类型,它有三个属性:指针长度容量

底层源码定义如下:

type slice struct {
    array unsafe.Pointer
    len   int
    cap   int
}
  1. 指针: 指向 slice 可以访问到的第一个元素。
  2. 长度: slice 中元素个数。
  3. 容量: slice 起始元素到底层数组最后一个元素间的元素个数。

比如使用 make([]byte, 5) 创建一个切片,它看起来是这样的:

声明和初始化

切片的使用还是比较简单的,这里举一个例子,直接看代码吧。

func main() {
    var nums []int  // 声明切片
    fmt.Println(len(nums), cap(nums)) // 0 0
    nums = append(nums, 1)   // 初始化
    fmt.Println(len(nums), cap(nums)) // 1 1

    nums1 := []int{1,2,3,4}    // 声明并初始化
    fmt.Println(len(nums1), cap(nums1))    // 4 4

    nums2 := make([]int,3,5)   // 使用make()函数构造切片
    fmt.Println(len(nums2), cap(nums2))    // 3 5
}

扩容时机

当切片的长度超过其容量时,切片会自动扩容。这通常发生在使用 append 函数向切片中添加元素时。

扩容时,Go 运行时会分配一个新的底层数组,并将原始切片中的元素复制到新数组中。然后,原始切片将指向新数组,并更新其长度和容量。

需要注意的是,由于扩容会分配新数组并复制元素,因此可能会影响性能。如果你知道要添加多少元素,可以使用 make 函数预先分配足够大的切片来避免频繁扩容。

接下来看看 append 函数,签名如下:

func Append(slice []int, items ...int) []int

append 函数参数长度可变,可以追加多个值,还可以直接追加一个切片。使用起来比较简单,分别看两个例子:

追加多个值:

package main

import "fmt"

func main() {
    s := []int{1, 2, 3}
    fmt.Println("初始切片:", s)

    s = append(s, 4, 5, 6)
    fmt.Println("追加多个值后的切片:", s)
}

输出结果为:

初始切片: [1 2 3]
追加多个值后的切片: [1 2 3 4 5 6]

再来看一下直接追加一个切片:

package main

import "fmt"

func main() {
    s1 := []int{1, 2, 3}
    fmt.Println("初始切片:", s1)

    s2 := []int{4, 5, 6}
    s1 = append(s1, s2...)
    fmt.Println("追加另一个切片后的切片:", s1)
}

输出结果为:

初始切片: [1 2 3]
追加另一个切片后的切片: [1 2 3 4 5 6]

再来看一个发生扩容的例子:

package main

import "fmt"

func main() {
    s := make([]int, 0, 3) // 创建一个长度为0,容量为3的切片
    fmt.Printf("初始状态: len=%d cap=%d %v\n", len(s), cap(s), s)

    for i := 1; i <= 5; i++ {
        s = append(s, i) // 向切片中添加元素
        fmt.Printf("添加元素%d: len=%d cap=%d %v\n", i, len(s), cap(s), s)
    }
}

输出结果为:

初始状态: len=0 cap=3 []
添加元素1: len=1 cap=3 [1]
添加元素2: len=2 cap=3 [1 2]
添加元素3: len=3 cap=3 [1 2 3]
添加元素4: len=4 cap=6 [1 2 3 4]
添加元素5: len=5 cap=6 [1 2 3 4 5]

在这个例子中,我们创建了一个长度为 0,容量为 3 的切片。然后,我们使用 append 函数向切片中添加 5 个元素。

当我们添加第 4 个元素时,切片的长度超过了其容量。此时,切片会自动扩容。新的容量是原始容量的两倍,即 6

表面现象已经看到了,接下来,我们就深入到源码层面,看看切片的扩容机制到底是什么样的。

源码分析

在 Go 语言的源码中,切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。

growslice 函数定义在 Go 语言的 runtime 包中,它的调用是在编译后的代码中实现的。具体来说,当执行 append 操作时,编译器会将其转换为类似下面的代码:

slice = append(slice, elem)

在上述代码中,如果切片容量不足以容纳新的元素,则会调用 growslice 函数进行扩容。所以 growslice 函数的调用是由编译器在生成的机器码中实现的,而不是在源代码中显式调用的

切片扩容策略有两个阶段,go1.18 之前和之后是不同的,这一点在 go1.18 的 release notes 中有说明。

下面我用 go1.17 和 go1.18 两个版本来分开说明。先通过一段测试代码,直观感受一下两个版本在扩容上的区别。

package main

import "fmt"

func main() {
    s := make([]int, 0)

    oldCap := cap(s)

    for i := 0; i < 2048; i++ {
        s = append(s, i)

        newCap := cap(s)

        if newCap != oldCap {
            fmt.Printf("[%d -> %4d] cap = %-4d  |  after append %-4d  cap = %-4d\n", 0, i-1, oldCap, i, newCap)
            oldCap = newCap
        }
    }
}

上述代码先创建了一个空的 slice,然后在一个循环里不断往里面 append 新元素。

然后记录容量的变化,每当容量发生变化的时候,记录下老的容量,添加的元素,以及添加完元素之后的容量。

这样就可以观察,新老 slice 的容量变化情况,从而找出规律。

运行结果(1.17 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1   
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 1024
[0 -> 1023] cap = 1024  |  after append 1024  cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1696
[0 -> 1695] cap = 1696  |  after append 1696  cap = 2304

运行结果(1.18 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 848 
[0 ->  847] cap = 848   |  after append 848   cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1792
[0 -> 1791] cap = 1792  |  after append 1792  cap = 2560

根据上面的结果还是能看到区别的,具体扩容策略下面边看源码边说明。

go1.17

扩容调用的是 growslice 函数,我复制了其中计算新容量部分的代码。

// src/runtime/slice.go

func growslice(et *_type, old slice, cap int) slice {
    // ...

    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        if old.cap < 1024 {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                newcap += newcap / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }

    // ...

    return slice{p, old.len, newcap}
}

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于 1024 就会将容量翻倍;
  3. 如果当前切片的长度大于等于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

go1.18

// src/runtime/slice.go

func growslice(et *_type, old slice, cap int) slice {
    // ...

    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        const threshold = 256
        if old.cap < threshold {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                // Transition from growing 2x for small slices
                // to growing 1.25x for large slices. This formula
                // gives a smooth-ish transition between the two.
                newcap += (newcap + 3*threshold) / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }

    // ...

    return slice{p, old.len, newcap}
}

和之前版本的区别,主要在扩容阈值,以及这行代码:newcap += (newcap + 3*threshold) / 4

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  3. 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

内存对齐

分析完两个版本的扩容策略之后,再看前面的那段测试代码,就会发现扩容之后的容量并不是严格按照这个策略的。

那是为什么呢?

实际上,growslice 的后半部分还有更进一步的优化(内存对齐等),靠的是 roundupsize 函数,在计算完 newcap 值之后,还会有一个步骤计算最终的容量:

capmem = roundupsize(uintptr(newcap) * ptrSize)
newcap = int(capmem / ptrSize)

这个函数的实现就不在这里深入了,先挖一个坑,以后再来补上。

总结

切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。

切片扩容分两个阶段,分为 go1.18 之前和之后:

一、go1.18 之前:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于 1024 就会将容量翻倍;
  3. 如果当前切片的长度大于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

二、go1.18 之后:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  3. 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

以上就是本文的全部内容,如果觉得还不错的话欢迎点赞转发关注,感谢支持。


参考文章:

推荐阅读:

标签:扩容,after,newcap,容量,cap,切片,Go,append
From: https://www.cnblogs.com/alwaysbeta/p/17300635.html

相关文章

  • Golang与Java全方位对比总结
    本文针对Golang与Java的基础语法、结构体函数、异常处理、并发编程及垃圾回收、资源消耗等各方面的差异进行对比总结,有不准确、不到位的地方还请大家不吝赐教。一、基础语法Golang:编码风格及可见域规则严格且简单;Java:来说层次接口清晰、规范,主要表现有以下这些。1、变量......
  • Golang基础--defer的用法
    defer语句用于延迟函数的调用,每次defer都会把一个函数压入栈中,函数返回前再把延迟的函数取出执行。三个示例:import"fmt"funcmain(){varinit=1deferfmt.Println(init)init=2}输出1。延迟函数fmt.Println(aInt)的参数在defer语句出现时就已经确......
  • Golang回调函数
    Golang回调函数实例二则定义回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于......
  • Python 操作 MongoDB
    Python操作MongoDB目录Python操作MongoDB1MongoDB简介1.1NoSQL的优点/缺点1.2使用MongoDB注意事项1.3MongoDB数据类型2MongoDB命令2.1基础命令2.2集合的增删改查2.2.1增加2.2.2查询2.2.3改2.2.4删除3python操作MongoDB1MongoDB简介MongoDB是一个基于分......
  • 【笔记】VisionMobile:扁平、扩展、挖掘,Google的策略的三大支柱
    今天看Flatten,Expand,Mine:ThethreepillarsofGoogle’sstrategy,很有趣的文章。将主要观点做了笔记。Google收入中压倒性的96%来自数字广告,为此,Google策略有三。一、Faltten:扫平任何广告和眼球之间的障碍。Google的两大操作系统Android和ChromeOS都是开源,可获取和衍生。......
  • 【入门】Go语言面向对象
    目录一、面向对象简介1.1什么是面向对象?1.2类和对象1.3面向对象编程的好处二、匿名字段实现继承及对象创建三、成员操作四、指针类型匿名字段五、多重继承六、基本方法创建七、为结构体添加方法八、使用方法注意事项九、面向对象方法练习十、方法继承十一、方法继承练习十二、......
  • 构造MySQL错误server has gone away
    interactive_timeout和wait_timeout默认值是28800秒即8小时。手动修改interactive_timeout时间为3秒setglobalinteractive_timeout=3;重新进入MySQL查看值interactive_timeout和wait_timeout区别1interactive_timeout针对交互式连接,wait_timeout针对非交互式连接。通过My......
  • 关于在执行 SAP ERP MM 模块 Post Goods Issue 时修改 Material Cost 的讨论
    我的知识星球里有朋友向我提问:MaterialPGI(601movement)willcalculatethematerialcostfrommaterialmasterdata.Myquestionis:isthereanywaystochangethematerialcostwhenPGI?(Exceptenhancement)在SAPERPMM模块中,MaterialPostGoodsIssue(PGI......
  • Django笔记十九之manager用法介绍
    本文首发于微信公众号:Hunter后端原文链接:Django笔记十九之manager用法介绍首先介绍一下manager的使用场景,比如我们有一些表级别的,需要重复使用的功能,都可以使用manager来实现。比如我们在前面的笔记中介绍的model的create()、update()等方法,Blog.objects.create()中......
  • go操作mysql
    数据库连接:使用database/sql包时必须注入(至少)一个数据库驱动。gogetgithub.com/go-sql-driver/mysql 导入包:import("database/sql"_"github.com/go-sql-driver/mysql") 通过Init函数连接数据库db,dbErr=sql.Open("mysql","root:root123456@tcp(127.0.0......