概念
回文自动机,PAM,又叫回文树。
用于处理和回文子串有关的问题,和 SAM 有一些类似的地方。
构造
首先 PAM 上的每个结点代表原串的一个回文子串。
根据神秘结论,原串本质不同的回文子串至多有 \(n\) 个,也就是 PAM 的点数至多是 \(n + 2\),边数至多是 \(n\).
考虑到回文串的奇偶性会导致一些讨论,考虑给奇数长度和偶数长度的回文子串分别构造奇根和偶根。
指针全部指向奇根,奇根长度为 \(-1\).
这样出现新字符的时候就可以直接挂到奇根。
然后考虑 PAM 上的转移。
从上到下的转移意味着在父结点代表的串中首尾各加上指定的字符。
从下到上的转移 fail 意味着该结点的最长回文真后缀对应的结点。
构造和 SAM 一样考虑增量,每次向上找到最后一个可以和当前位置匹配的结点转移就行。
向上跳相当于消耗已有的势能,势能分析得构造 PAM 的时间复杂度是 \(O(n)\).
有时候会需要知道某串中长度小于一半的回文子串,可以另外维护一个指针指向对应的子串。更新暴力向上跳就行。
void build() { cur = fail[0] = fail[1] = 1, len[1] = -1; }
int get_fail(int nd, int p)
{
while (s[p - len[nd] - 1] != s[p]) nd = fail[nd];
return nd;
}
void insert(int p)
{
int x = get_fail(lst, p), c = ch_id(s[p]);
if (!son[x][c])
{
cur++;
len[cur] = len[x] + 2, fail[cur] = son[get_fail(fail[x], p)][c];
son[x][c] = cur;
if (len[cur] <= 2) trans[cur] = fail[cur];
else
{
int tr = trans[x];
while ((s[p - len[tr] - 1] != s[p]) || ((len[tr] + 2) * 2 > len[cur])) tr = fail[tr];
trans[cur] = son[tr][c];
}
}
lst = son[x][c], cnt[lst]++;
}
套路
本质不同回文子串个数
等价于 PAM 的总点数 - 2,也就是除去奇根和偶根。
回文子串出现次数
类似 SAM,考虑在回文树上求子树和。
回文树上 dp
例题:P4762 [CERC2014]Virus synthesis
考虑令 \(f[i]\) 表示构造回文树上结点 \(i\) 对应子串需要的最少次数,\(trans[i]\) 表示结点 \(i\) 长度不超过一半的最长回文真后缀结点。
讨论一下树边的转移和 trans 有关的转移就行。
k 阶回文子串计数
例题:CF835D Palindromic characteristics
考虑讨论 \(i\) 和 \(trans[i]\) 的长度转移。
咕咕咕,明天继续更。
标签:子串,结点,cur,fail,自动机,PAM,回文 From: https://www.cnblogs.com/lingspace/p/pam.html