import pandas as pd import numpy as np data = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/original_data.xls') print('3149陈坤宗 \n初始状态的数据形状为:', data.shape) # 删除热水器编号,有无水流,节能模式 data.drop(labels = ["热水器编号","有无水流","节能模式"], axis = 1,inplace = True) print('删除冗余特征后的数据形状为:', data.shape) data.to_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heart.csv',index = False) threshold = pd.Timedelta('4 min') #阈值为分钟 data['发生时间'] = pd.to_datetime(data['发生时间'], format = '%Y%m%d%H%M%S') # 转换时间格式 data = data[data['水流量'] > 0] #只要流量大于0的记录 #相邻时间向前差分,比较是否大于阈值 sjKs = data['发生时间'].diff() > threshold sjKs.iloc[0] = True # 令第一个时间为第一个用水事件的开始事件 sjJs = sjKs.iloc[1:] # 向后差分的结果 # 令最后一个时间作为最后一个用水事件的结束时间 sjJs = pd.concat([sjJs,pd.Series(True)]) # 创建数据框,并定义用水事件序列 sj = pd.DataFrame(np.arange(1,sum(sjKs)+1),columns = ["事件序号"]) sj["事件起始编号"] = data.index[sjKs == 1]+1 # 定义用水事件的起始编号 sj["事件终止编号"] = data.index[sjJs == 1]+1 # 定义用水事件的终止编号 print('当阈值为4分钟的时候事件数目为:',sj.shape[0]) sj.to_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj.csv',index = False) n = 4 #使用以后四个点的平均斜率 threshold = pd.Timedelta(minutes = 5) #专家阈值 data['发生时间'] = pd.to_datetime(data['发生时间'], format = '%Y%m%d%H%M%S') data = data[data['水流量'] > 0] #只要流量大于0的记录 # 自定义函数:输入划分时间的时间阈值,得到划分的事件数 def event_num(ts): d = data['发生时间'].diff() > ts #相邻时间作差分,比较是否大于阈值 return d.sum() + 1 #这样直接返回事件数 dt = [pd.Timedelta(minutes = i) for i in np.arange(1, 9, 0.25)] h = pd.DataFrame(dt, columns = ['阈值']) #转换数据框,定义阈值列 h['事件数'] = h['阈值'].apply(event_num) #计算每个阈值对应的事件数 h['斜率'] = h['事件数'].diff()/0.25 #计算每两个相邻点对应的斜率 #往前取n个斜率绝对值平均作为斜率指标 h['斜率指标']= h['斜率'].abs().rolling(4).mean() ts = h['阈值'][h['斜率指标'].idxmin() - n] #用idxmin返回最小值的Index,由于rolling_mean()计算的是前n个斜率的绝对值平均 #所以结果要进行平移(-n) if ts > threshold: ts = pd.Timedelta(minutes = 4) print('计算出的单次用水时长的阈值为:',ts)
import pandas as pd import numpy as np # 读取热水器使用数据记录 data = pd.read_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heart.csv') # 读取用水事件记录 sj = pd.read_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj.csv') data["发生时间"] = pd.to_datetime(data["发生时间"], format = "%Y%m%d%H%M%S") # 转换时间格式 # 构造特征:总用水时长 timeDel = pd.Timedelta("1 sec") sj["事件开始时间"] = data.iloc[sj["事件起始编号"]-1,0].values- timeDel sj["事件结束时间"] = \ data.iloc[sj["事件终止编号"]-1,0].values + timeDel sj['洗浴时间点'] = [i.hour for i in sj["事件开始时间"]] tmp1 = sj["事件结束时间"] - sj["事件开始时间"] sj["总用水时长"] = np.int64(tmp1)/1000000000 # 构造用水停顿事件 # 构造特征“停顿开始时间”、“停顿结束时间” # 停顿开始时间指从有水流到无水流,停顿结束时间指从无水流到有水流 for i in range(len(data)-1): if (data.loc[i,"水流量"] != 0) & (data.loc[i + 1,"水流量"] == 0) : data.loc[i + 1,"停顿开始时间"] = \ data.loc[i +1, "发生时间"] - timeDel if (data.loc[i,"水流量"] == 0) & (data.loc[i + 1,"水流量"] != 0) : data.loc[i,"停顿结束时间"] = \ data.loc[i , "发生时间"] + timeDel # 提取停顿开始时间与结束时间所对应行号,放在数据框Stop中 indStopStart = data.index[data["停顿开始时间"].notnull()]+1 indStopEnd = data.index[data["停顿结束时间"].notnull()]+1 Stop = pd.DataFrame(data = {"停顿开始编号":indStopStart[:-1], "停顿结束编号":indStopEnd[1:]}) # 计算停顿时长,并放在数据框stop中,停顿时长=停顿结束时间-停顿结束时间 tmp2 = data.loc[indStopEnd[1:]-1,"停顿结束时间"] tmp3 = data.loc[indStopStart[:-1]-1,"停顿开始时间"] tmp4 = tmp2.values-tmp3.values Stop["停顿时长"] = np.int64(tmp4)/1000000000 # 将每次停顿与事件匹配,停顿的开始时间要大于事件的开始时间, # 且停顿的结束时间要小于事件的结束时间 for i in range(len(sj)): Stop.loc[(Stop["停顿开始编号"] > sj.loc[i,"事件起始编号"]) & (Stop["停顿结束编号"] < sj.loc[i,"事件终止编号"]), "停顿归属事件"] = i+1 # 删除停顿次数为0的事件 Stop = Stop[Stop["停顿归属事件"].notnull()] # 构造特征 用水事件停顿总时长、停顿次数、停顿平均时长、 # 用水时长,用水/总时长 stopAgg = Stop.groupby("停顿归属事件").agg({"停顿时长":sum, "停顿开始编号":len}) sj.loc[stopAgg.index - 1,"总停顿时长"] = \ stopAgg.loc[:,"停顿时长"].values sj.loc[stopAgg.index-1,"停顿次数"] = \ stopAgg.loc[:,"停顿开始编号"].values sj.fillna(0,inplace=True) # 对缺失值用0插补 stopNo0 = sj["停顿次数"] != 0 # 判断用水事件是否存在停顿 sj.loc[stopNo0,"平均停顿时长"] = \ sj.loc[stopNo0,"总停顿时长"]/sj.loc[stopNo0,"停顿次数"] sj.fillna(0,inplace=True) # 对缺失值用0插补 sj["用水时长"] = sj["总用水时长"] - sj["总停顿时长"] # 定义特征用水时长 # 定义特征 用水/总时长 sj["用水/总时长"] = sj["用水时长"] / sj["总用水时长"] print('用水事件用水时长与频率特征构造完成后数据的特征为:\n',sj.columns) print('用水事件用水时长与频率特征构造完成后数据的前5行5列特征为:\n', sj.iloc[:5,:5])
data["水流量"] = data["水流量"] / 60 # 原单位L/min,现转换为L/sec sj["总用水量"] = 0 # 给总用水量赋一个初始值0 for i in range(len(sj)): Start = sj.loc[i,"事件起始编号"]-1 End = sj.loc[i,"事件终止编号"]-1 if Start != End: for j in range(Start,End): if data.loc[j,"水流量"] != 0: sj.loc[i,"总用水量"] = (data.loc[j + 1,"发生时间"] - data.loc[j,"发生时间"]).seconds* \ data.loc[j,"水流量"] + \ sj.loc[i,"总用水量"] sj.loc[i,"总用水量"] = sj.loc[i,"总用水量"] + \ data.loc[End,"水流量"] * 2 else: sj.loc[i,"总用水量"] = data.loc[Start,"水流量"] * 2 sj["平均水流量"] = sj["总用水量"] / sj["用水时长"] # 定义特征 平均水流量 # 构造特征:水流量波动 # 水流量波动=∑(((单次水流的值-平均水流量)^2)*持续时间)/用水时长 sj["水流量波动"] = 0 # 给水流量波动赋一个初始值0 for i in range(len(sj)): Start = sj.loc[i,"事件起始编号"] - 1 End = sj.loc[i,"事件终止编号"] - 1 for j in range(Start,End + 1): if data.loc[j,"水流量"] != 0: slbd = (data.loc[j,"水流量"] - sj.loc[i,"平均水流量"])**2 slsj = (data.loc[j + 1,"发生时间"] - data.loc[j,"发生时间"]).seconds sj.loc[i,"水流量波动"] = \ slbd * slsj + sj.loc[i,"水流量波动"] sj.loc[i,"水流量波动"] = \ sj.loc[i,"水流量波动"] / sj.loc[i,"用水时长"] # 构造特征:停顿时长波动 # 停顿时长波动=∑(((单次停顿时长-平均停顿时长)^2)*持续时间)/总停顿时长 sj["停顿时长波动"] = 0 # 给停顿时长波动赋一个初始值0 for i in range(len(sj)): # 当停顿次数为0或1时,停顿时长波动值为0,故排除 if sj.loc[i,"停顿次数"] > 1: for j in Stop.loc[Stop["停顿归属事件"] == \ (i+1),"停顿时长"].values: sj.loc[i,"停顿时长波动"] = \ ((j - sj.loc[i,"平均停顿时长"])**2) * j + \ sj.loc[i,"停顿时长波动"] sj.loc[i,"停顿时长波动"] = \ sj.loc[i,"停顿时长波动"] / sj.loc[i,"总停顿时长"] print('用水量和波动特征构造完成后数据的特征为:\n',sj.columns) print('用水量和波动特征构造完成后数据的前5行5列特征为:\n', sj.iloc[:5,:5])
sj_bool = (sj['用水时长'] >100) & \ (sj['总用水时长'] > 120) & (sj['总用水量'] > 5) sj_final = sj.loc[sj_bool,:] sj_final.to_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj_final.xlsx',index = False) print('筛选出候选洗浴事件前的数据形状为:',sj.shape) print('筛选出候选洗浴事件后的数据形状为:',sj_final.shape)
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPClassifier import joblib ## 读取数据 Xtrain = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj_final.xlsx') ytrain = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heater_log.xlsx') test = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/test_data.xlsx') ## 训练集测试集区分。 x_train, x_test, y_train, y_test = \ Xtrain.iloc[:,5:],test.iloc[:,4:-1],\ ytrain.iloc[:,-1],test.iloc[:,-1] ## 标准化 stdScaler = StandardScaler().fit(x_train) x_stdtrain = stdScaler.transform(x_train) x_stdtest = stdScaler.transform(x_test) ## 建立模型 bpnn = MLPClassifier(hidden_layer_sizes = (17,10), max_iter = 200, solver = 'lbfgs',random_state=45) bpnn.fit(x_stdtrain, y_train) ## 保存模型 joblib.dump(bpnn,'water_heater_nnet.m') print('构建的模型为:\n',bpnn) # 代码 9-8 # 模型预测 # 模型预测 from sklearn.metrics import classification_report from sklearn.metrics import roc_curve from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt bpnn = joblib.load('water_heater_nnet.m') ## 加载模型 y_pred = bpnn.predict(x_stdtest) # 返回预测结果 print('神经网络预测结果评价报告:\n', classification_report(y_test,y_pred)) ## 绘制roc曲线图 plt.rcParams['font.sans-serif'] = 'SimHei' ##显示中文 plt.rcParams['axes.unicode_minus'] = False ##显示负号 fpr, tpr, thresholds = roc_curve(y_pred,y_test) ## 求出TPR和FPR plt.figure(figsize=(6,4))## 创建画布 plt.plot(fpr,tpr)## 绘制曲线 plt.title('用户用水事件识别ROC曲线 3149陈坤宗')##标题 plt.xlabel('FPR')## x轴标签 plt.ylabel('TPR')## y轴标签 plt.savefig('用户用水事件识别ROC曲线.png')## 保存图片 plt.show()## 显示图形
标签:loc,家用,停顿,用户,sj,热水器,pd,水流量,data From: https://www.cnblogs.com/ckz0314/p/17259827.html