首页 > 其他分享 >家用热水器用户行为分析

家用热水器用户行为分析

时间:2023-03-26 23:00:00浏览次数:42  
标签:loc 家用 停顿 用户 sj 热水器 pd 水流量 data

import pandas as pd
import numpy as np
data = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/original_data.xls')
print('3149陈坤宗 \n初始状态的数据形状为:', data.shape)
# 删除热水器编号,有无水流,节能模式
data.drop(labels = ["热水器编号","有无水流","节能模式"],
    axis = 1,inplace = True)
print('删除冗余特征后的数据形状为:', data.shape)
data.to_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heart.csv',index = False)

threshold = pd.Timedelta('4 min') #阈值为分钟
data['发生时间'] = pd.to_datetime(data['发生时间'], 
    format = '%Y%m%d%H%M%S') # 转换时间格式
data = data[data['水流量'] > 0] #只要流量大于0的记录
#相邻时间向前差分,比较是否大于阈值
sjKs = data['发生时间'].diff() > threshold 
sjKs.iloc[0] = True # 令第一个时间为第一个用水事件的开始事件
sjJs = sjKs.iloc[1:] # 向后差分的结果
# 令最后一个时间作为最后一个用水事件的结束时间
sjJs = pd.concat([sjJs,pd.Series(True)]) 
# 创建数据框,并定义用水事件序列
sj = pd.DataFrame(np.arange(1,sum(sjKs)+1),columns = ["事件序号"]) 
sj["事件起始编号"] = data.index[sjKs == 1]+1 # 定义用水事件的起始编号
sj["事件终止编号"] = data.index[sjJs == 1]+1  # 定义用水事件的终止编号
print('当阈值为4分钟的时候事件数目为:',sj.shape[0])
sj.to_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj.csv',index = False)

n = 4 #使用以后四个点的平均斜率
threshold = pd.Timedelta(minutes = 5) #专家阈值
data['发生时间'] = pd.to_datetime(data['发生时间'], 
    format = '%Y%m%d%H%M%S')
data = data[data['水流量'] > 0] #只要流量大于0的记录
# 自定义函数:输入划分时间的时间阈值,得到划分的事件数
def event_num(ts):
    d = data['发生时间'].diff() > ts #相邻时间作差分,比较是否大于阈值
    return d.sum() + 1 #这样直接返回事件数
dt = [pd.Timedelta(minutes = i) for i in np.arange(1, 9, 0.25)]
h = pd.DataFrame(dt, columns = ['阈值']) #转换数据框,定义阈值列
h['事件数'] = h['阈值'].apply(event_num) #计算每个阈值对应的事件数
h['斜率'] = h['事件数'].diff()/0.25 #计算每两个相邻点对应的斜率
#往前取n个斜率绝对值平均作为斜率指标
h['斜率指标']= h['斜率'].abs().rolling(4).mean()
ts = h['阈值'][h['斜率指标'].idxmin() - n]
#用idxmin返回最小值的Index,由于rolling_mean()计算的是前n个斜率的绝对值平均
#所以结果要进行平移(-n)
if ts > threshold:
    ts = pd.Timedelta(minutes = 4)
print('计算出的单次用水时长的阈值为:',ts)

 

 

import pandas as pd 
import numpy as np
# 读取热水器使用数据记录
data = pd.read_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heart.csv') 
# 读取用水事件记录
sj = pd.read_csv('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj.csv')
data["发生时间"] = pd.to_datetime(data["发生时间"],
    format = "%Y%m%d%H%M%S") # 转换时间格式

# 构造特征:总用水时长
timeDel = pd.Timedelta("1 sec")
sj["事件开始时间"] = data.iloc[sj["事件起始编号"]-1,0].values- timeDel
sj["事件结束时间"] = \
data.iloc[sj["事件终止编号"]-1,0].values + timeDel
sj['洗浴时间点'] = [i.hour for i in sj["事件开始时间"]]
tmp1 = sj["事件结束时间"] - sj["事件开始时间"]
sj["总用水时长"] = np.int64(tmp1)/1000000000 

# 构造用水停顿事件
# 构造特征“停顿开始时间”、“停顿结束时间”
# 停顿开始时间指从有水流到无水流,停顿结束时间指从无水流到有水流
for i in range(len(data)-1):
    if (data.loc[i,"水流量"] != 0) & (data.loc[i + 1,"水流量"] == 0) :
        data.loc[i + 1,"停顿开始时间"] = \
        data.loc[i +1, "发生时间"] - timeDel
    if (data.loc[i,"水流量"] == 0) & (data.loc[i + 1,"水流量"] != 0) :
        data.loc[i,"停顿结束时间"] = \
        data.loc[i , "发生时间"] + timeDel 
# 提取停顿开始时间与结束时间所对应行号,放在数据框Stop中
indStopStart = data.index[data["停顿开始时间"].notnull()]+1
indStopEnd = data.index[data["停顿结束时间"].notnull()]+1
Stop = pd.DataFrame(data = {"停顿开始编号":indStopStart[:-1],
                            "停顿结束编号":indStopEnd[1:]}) 
# 计算停顿时长,并放在数据框stop中,停顿时长=停顿结束时间-停顿结束时间
tmp2 = data.loc[indStopEnd[1:]-1,"停顿结束时间"]
tmp3 = data.loc[indStopStart[:-1]-1,"停顿开始时间"]
tmp4 = tmp2.values-tmp3.values
Stop["停顿时长"] = np.int64(tmp4)/1000000000 
# 将每次停顿与事件匹配,停顿的开始时间要大于事件的开始时间,
# 且停顿的结束时间要小于事件的结束时间
for i in range(len(sj)):
    Stop.loc[(Stop["停顿开始编号"] > sj.loc[i,"事件起始编号"]) & 
        (Stop["停顿结束编号"] < sj.loc[i,"事件终止编号"]),
            "停顿归属事件"] = i+1
             
# 删除停顿次数为0的事件
Stop = Stop[Stop["停顿归属事件"].notnull()]
# 构造特征 用水事件停顿总时长、停顿次数、停顿平均时长、
# 用水时长,用水/总时长
stopAgg =  Stop.groupby("停顿归属事件").agg({"停顿时长":sum,
    "停顿开始编号":len})
sj.loc[stopAgg.index - 1,"总停顿时长"] = \
stopAgg.loc[:,"停顿时长"].values 
sj.loc[stopAgg.index-1,"停顿次数"] = \
stopAgg.loc[:,"停顿开始编号"].values
sj.fillna(0,inplace=True) # 对缺失值用0插补
stopNo0 = sj["停顿次数"] != 0 # 判断用水事件是否存在停顿
sj.loc[stopNo0,"平均停顿时长"] = \
sj.loc[stopNo0,"总停顿时长"]/sj.loc[stopNo0,"停顿次数"] 
sj.fillna(0,inplace=True) # 对缺失值用0插补
sj["用水时长"] = sj["总用水时长"] - sj["总停顿时长"] # 定义特征用水时长
# 定义特征 用水/总时长
sj["用水/总时长"] = sj["用水时长"] / sj["总用水时长"]
print('用水事件用水时长与频率特征构造完成后数据的特征为:\n',sj.columns)
print('用水事件用水时长与频率特征构造完成后数据的前5行5列特征为:\n',
      sj.iloc[:5,:5])

 

 

data["水流量"] = data["水流量"] / 60 # 原单位L/min,现转换为L/sec
sj["总用水量"] = 0 # 给总用水量赋一个初始值0
for i in range(len(sj)):
    Start = sj.loc[i,"事件起始编号"]-1
    End = sj.loc[i,"事件终止编号"]-1
    if Start != End:
        for j in range(Start,End):
            if data.loc[j,"水流量"] != 0:
                sj.loc[i,"总用水量"] = (data.loc[j + 1,"发生时间"] - 
                    data.loc[j,"发生时间"]).seconds* \
                    data.loc[j,"水流量"] + \
                    sj.loc[i,"总用水量"]
        sj.loc[i,"总用水量"] = sj.loc[i,"总用水量"] + \
        data.loc[End,"水流量"] * 2
    else:
        sj.loc[i,"总用水量"] = data.loc[Start,"水流量"] * 2
        
sj["平均水流量"] = sj["总用水量"] / sj["用水时长"] # 定义特征 平均水流量
# 构造特征:水流量波动
# 水流量波动=∑(((单次水流的值-平均水流量)^2)*持续时间)/用水时长
sj["水流量波动"] = 0 # 给水流量波动赋一个初始值0
for i in range(len(sj)):
    Start = sj.loc[i,"事件起始编号"] - 1
    End = sj.loc[i,"事件终止编号"] - 1
    for j in range(Start,End + 1):
        if data.loc[j,"水流量"] != 0:
            slbd = (data.loc[j,"水流量"] - sj.loc[i,"平均水流量"])**2
            slsj = (data.loc[j + 1,"发生时间"] - 
                data.loc[j,"发生时间"]).seconds
            sj.loc[i,"水流量波动"] = \
            slbd * slsj + sj.loc[i,"水流量波动"]
    sj.loc[i,"水流量波动"] = \
    sj.loc[i,"水流量波动"] / sj.loc[i,"用水时长"]

# 构造特征:停顿时长波动
# 停顿时长波动=∑(((单次停顿时长-平均停顿时长)^2)*持续时间)/总停顿时长
sj["停顿时长波动"] = 0 # 给停顿时长波动赋一个初始值0
for i in range(len(sj)):
    # 当停顿次数为0或1时,停顿时长波动值为0,故排除
    if sj.loc[i,"停顿次数"] > 1:
        for j in Stop.loc[Stop["停顿归属事件"] == \
        (i+1),"停顿时长"].values:
            sj.loc[i,"停顿时长波动"] = \
            ((j - sj.loc[i,"平均停顿时长"])**2) * j + \
            sj.loc[i,"停顿时长波动"]
        sj.loc[i,"停顿时长波动"] = \
        sj.loc[i,"停顿时长波动"] / sj.loc[i,"总停顿时长"]
print('用水量和波动特征构造完成后数据的特征为:\n',sj.columns)
print('用水量和波动特征构造完成后数据的前5行5列特征为:\n',
    sj.iloc[:5,:5])

 

 

sj_bool = (sj['用水时长'] >100) & \
(sj['总用水时长'] > 120) & (sj['总用水量'] > 5)
sj_final = sj.loc[sj_bool,:]
sj_final.to_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj_final.xlsx',index = False)
print('筛选出候选洗浴事件前的数据形状为:',sj.shape)
print('筛选出候选洗浴事件后的数据形状为:',sj_final.shape)

 

 

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import joblib
## 读取数据
Xtrain = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/sj_final.xlsx')
ytrain = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/water_heater_log.xlsx')
test = pd.read_excel('E:\py mathph\JupyterLab-Portable-3.1.0-3.9\shujuwajue/test_data.xlsx')
## 训练集测试集区分。
x_train, x_test, y_train, y_test = \
Xtrain.iloc[:,5:],test.iloc[:,4:-1],\
ytrain.iloc[:,-1],test.iloc[:,-1]
## 标准化
stdScaler = StandardScaler().fit(x_train)
x_stdtrain = stdScaler.transform(x_train)
x_stdtest = stdScaler.transform(x_test)
## 建立模型
bpnn = MLPClassifier(hidden_layer_sizes = (17,10), 
    max_iter = 200, solver = 'lbfgs',random_state=45)
bpnn.fit(x_stdtrain, y_train)
## 保存模型
joblib.dump(bpnn,'water_heater_nnet.m')
print('构建的模型为:\n',bpnn)



# 代码 9-8
# 模型预测
# 模型预测
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
bpnn = joblib.load('water_heater_nnet.m') ## 加载模型
y_pred = bpnn.predict(x_stdtest) # 返回预测结果
print('神经网络预测结果评价报告:\n',
    classification_report(y_test,y_pred))
## 绘制roc曲线图
plt.rcParams['font.sans-serif'] = 'SimHei' ##显示中文
plt.rcParams['axes.unicode_minus'] = False ##显示负号
fpr, tpr, thresholds = roc_curve(y_pred,y_test) ## 求出TPR和FPR
plt.figure(figsize=(6,4))## 创建画布
plt.plot(fpr,tpr)## 绘制曲线
plt.title('用户用水事件识别ROC曲线    3149陈坤宗')##标题
plt.xlabel('FPR')## x轴标签
plt.ylabel('TPR')## y轴标签
plt.savefig('用户用水事件识别ROC曲线.png')## 保存图片
plt.show()## 显示图形

 

标签:loc,家用,停顿,用户,sj,热水器,pd,水流量,data
From: https://www.cnblogs.com/ckz0314/p/17259827.html

相关文章

  • 家用热水器用户行为分析与事件识别
    #10-1importpandasaspdimportmatplotlib.pyplotaspltinputfile="D:\数据分析\original_data.xls"data=pd.read_excel(inputfile)lv_non=pd.value_counts(data......
  • 第五周(家用热水器用户行为分析与时间识别)
    探索分析热水器的水流量状况#%%importpandasaspdimportmatplotlib.pyplotasplt#%%inputfile='../data/original_data.xls'data=pd.read_excel(inputfile)......
  • 家用热水器用户行为分析与事件识别
    一、数据探索1、探索分析热水器的水流量状况`importpandasaspdimportmatplotlib.pyplotaspltinputfile='D:/a/第十章/original_data.xls'data=pd.read_exce......
  • 家用热水器用户行为分析与事件识别
    importpandasaspdimportmatplotlib.pyplotaspltinputfile=r'E:\sj\original_data.xls'#输入的数据文件data=pd.read_excel(inputfile)#读取数据#查看有......
  • 家用热水器
    importpandasaspdimportnumpyasnpdata=pd.read_excel(r'G:\data\data\original_data.xls')print('初始状态的数据形状为:',data.shape)#删除热水器编号、有......
  • 分析热水器
    1importpandasaspd2importmatplotlib.pyplotasplt34inputfile='original_data.xls'#'#输入的数据文件5data=pd.read_excel(inputfile)#读......
  • [FastAPI-29]用户注册API-File字段需要在 Form之前
    importtypingfromfastapiimportFastAPI,Form,File,UploadFilefrompydanticimportBaseModelapp=FastAPI(title="注册接口")'''1.需要输入账号密码头......
  • mysql 8.0如何创建用户并赋予权限?
    下面1,2,3命令都是在mysql里面敲,4是在linux敲1.创建用户createuser'liqi'@'%'identifiedby'liqi1234';参数说明:%代表通配所有host地址权限(可远程访问)by后......
  • Linux用户和用户组管理/etc目录解释
    1.Linux/etc/passwd内容解释Linux系统中的/etc/passwd文件,是系统用户配置文件,存储了系统中所有用户的基本信息,并且所有用户都可以对此文件执行读操作。首先我们来打......
  • Ceph——使用普通用户挂载cephfs
    创建客户端账户  创建账户  创建一个名为lxhfs的普通账户,允许获取ceph状态信息,允许对mds元数据有读写权限,语序对存储池cephfs-datacephfs的存储池有读写和执行权限......