首页 > 其他分享 >数据分析第十章

数据分析第十章

时间:2023-03-26 21:35:42浏览次数:45  
标签:数据分析 loc plt 第十章 sj pd 水流量 data

#10-1
import pandas as pd
import matplotlib.pyplot as plt

inputfile="D:\数据分析\original_data.xls"
data=pd.read_excel(inputfile)

lv_non=pd.value_counts(data['有无水流'])['无']
lv_move=pd.value_counts(data['有无水流'])['有']

fig=plt.figure(figsize=(6,5))
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
plt.bar(x=range(2),height=[lv_non,lv_move],width=0.4,alpha=0.8,color='skyblue')
plt.xticks([index for index in range(2)],['无','有'])
plt.xlabel('水流状态')
plt.ylabel('记录数')
plt.title('学号3108不同水流状态记录数')
plt.show()
plt.close()

water=data['水流量']
fig=plt.figure(figsize=(5,8))
plt.boxplot(water,
            patch_artist=True,
            labels=['水流量'],
            boxprops={'facecolor':'lightblue'})
plt.title('学号3108水流量分布箱型图')
plt.grid(axis='y')
plt.show()
                        

 

 

 

 

#10-2
import pandas as pd
import numpy as np
data=pd.read_excel("D:\数据分析\original_data.xls")
print('初始状态的数据形状为:',data.shape)
data.drop(labels=["热水器编号","有无水流","节能模式"],axis=1,inplace=True)
print('删除冗余属性后的数据形状为:',data.shape)
data.to_csv("D:\数据分析\water_heart.csv",index=False)

 

 

#10-3
data=pd.read_csv("D:\数据分析\water_heart.csv")
threshold=pd.Timedelta('4 min')
data['发生时间']=pd.to_datetime(data['发生时间'],format='%Y%m%d%H%M%S')
data=data[data['水流量']>0]
sjKs=data['发生时间'].diff()>threshold
sjKs.iloc[0]=True
sjJs=sjKs.iloc[1:]
sjJs=pd.concat([sjJs,pd.Series(True)])
sj=pd.DataFrame(np.arange(1,sum(sjKs)+1),columns=["事件序号"])
sj["事件起始编号"]=data.index[sjKs==1]+1
sj["事件终止编号"]=data.index[sjJs==1]+1
print('当阈值为4分钟的时候事件数目为:',sj.shape[0])
sj.to_csv("D:\数据分析\sj.csv",index=False)

 

 

#10-4
n=4
threshold=pd.Timedelta(minutes=5)
data['发生时间']=pd.to_datetime(data['发生时间'],format='%Y%m%d%H%M%S')
data=data[data['水流量']>0]
def event_num(ts):
    d=data['发生时间'].diff()>ts
    return d.sum()+1
dt=[pd.Timedelta(minutes=i) for i in np.arange(1,9,0.25)]
h=pd.DataFrame(dt,columns=['阈值'])
h['事件数']=h['阈值'].apply(event_num)
h['斜率']=h['事件数'].diff()/0.25
h['斜率指标']=h['斜率'].abs().rolling(4).mean()
ts=h['阈值'][h['斜率指标'].idxmin()-n]
if ts>threshold:
    ts=pd.Timedelta(minutes=4)
print('计算出的单次用水时长的阈值为:',ts)

 

 

#10-5
data=pd.read_csv("D:\数据分析\water_heart.csv")
sj=pd.read_csv("D:\数据分析\sj.csv")
data["发生时间"]=pd.to_datetime(data["发生时间"],format="%Y%m%d%H%M%S")

timeDel=pd.Timedelta("0.5 sec")
sj["事件开始时间"]=data.iloc[sj["事件起始编号"]-1,0].values-timeDel
sj["事件结束时间"]=data.iloc[sj["事件终止编号"]-1,0].values+timeDel
sj['洗浴时间点']=[i.hour for i in sj["事件开始时间"]]
sj["总用水时长"]=np.int64(sj["事件结束时间"]-sj["事件开始时间"])/1000000000+1

for i in range(len(data)-1):
    if(data.loc[i,"水流量"]!=0)&(data.loc[i+1,"水流量"]==0):
        data.loc[i+1,"停顿开始时间"]=data.loc[i+1,"发生时间"]-timeDel
    if(data.loc[i,"水流量"]==0)&(data.loc[i+1,"水流量"]!=0):
        data.loc[i,"停顿结束时间"]=data.loc[i,"发生时间"]+timeDel

indStopStart=data.index[data["停顿开始时间"].notnull()]+1
indStopEnd=data.index[data["停顿结束时间"].notnull()]+1
Stop=pd.DataFrame(data={"停顿开始编号":indStopStart[:-1],
                        "停顿结束编号":indStopEnd[1:]})

Stop["停顿时长"]=np.int64(data.loc[indStopEnd[1:]-1,"停顿结束时间"].values-data.loc[indStopStart[:-1]-1,"停顿开始时间"].values)/1000000000

for i in range(len(sj)):
    Stop.loc[(Stop["停顿开始编号"]>sj.loc[i,"事件起始编号"])&
             (Stop["停顿结束编号"]<sj.loc[i,"事件终止编号"]),"停顿归属事件"]=i+1

Stop=Stop[Stop["停顿归属事件"].notnull()]

stopAgg=Stop.groupby("停顿归属事件").agg({"停顿时长":sum,"停顿开始编号":len})
sj.loc[stopAgg.index-1,"总停顿时长"]=stopAgg.loc[:,"停顿时长"].values
sj.loc[stopAgg.index-1,"停顿次数"]=stopAgg.loc[:,"停顿开始编号"].values
sj.fillna(0,inplace=True)
stopNo0=sj["停顿次数"]!=0
sj.loc[stopNo0,"平均停顿时长"]=sj.loc[stopNo0,"总停顿时长"]/sj.loc[stopNo0,"停顿次数"]
sj.fillna(0,inplace=True)
sj["用水时长"]=sj["总用水时长"]-sj["总停顿时长"]
sj["用水/总时长"]=sj["用水时长"]/sj["总用水时长"]
print('用水事件用水时长与频率属性构造完成后数据的属性为:\n',sj.columns)
print('用水事件用水时长与频率属性构造完成后数据的前5行5列属性为:\n',sj.iloc[:5,:5])
                      

 

 

#10-6
data["水流量"]=data["水流量"]/60
sj["总用水量"]=0
for i in range(len(sj)):
    Start=sj.loc[i,"事件起始编号"]-1
    End=sj.loc[i,"事件终止编号"]-1
    if Start !=End:
        for j in range (Start,End):
            if data.loc[j,"水流量"]!=0:
                sj.loc[i,"总用水量"]=(data.loc[j+1,"发生时间"]-
                                  data.loc[j,"发生时间"]).seconds*\
                                  data.loc[j,"水流量"]+sj.loc[i,"总用水量"]
        sj.loc[i,"总用水量"]=sj.loc[i,"总用水量"]+data.loc[End,"水流量"]*2
    else:
        sj.loc[i,"总用水量"]=data.loc[Start,"水流量"]*2
        
sj["平均水流量"]=sj["总用水量"]/sj["用水时长"]

sj["水流量波动"]=0
for i in range(len(sj)):
    Start=sj.loc[i,"事件起始编号"]-1
    End=sj.loc[i,"事件终止编号"]-1
    for j in range(Start,End+1):
        if data.loc[j,"水流量"]!=0:
            slbd=(data.loc[j,"水流量"]-sj.loc[i,"平均水流量"])**2
            slsj=(data.loc[j+1,"发生时间"]-data.loc[j,"发生时间"]).seconds
            sj.loc[i,"水流量波动"]=slbd*slsj+sj.loc[i,"水流量波动"]
    sj.loc[i,"水流量波动"]=sj.loc[i,"水流量波动"]/sj.loc[i,"用水时长"]
    
sj["停顿时长波动"]=0
for i in range(len(sj)):
    if sj.loc[i,"停顿次数"]>1:
        for j in Stop.loc[Stop["停顿归属事件"]==(i+1),"停顿时长"].values:
            sj.loc[i,"停顿时长波动"]=((j-sj.loc[i,"平均停顿时长"])**2)*j+\
                                    sj.loc[i,"停顿时长波动"]
        sj.loc[i,"停顿时长波动"]=sj.loc[i,"停顿时长波动"]/sj.loc[i,"总停顿时长"]
print('用水量和波动属性构造完成后数据的属性为:\n',sj.columns)
print('用水量和波动属性构造完成后数据的前5行前5列属性为:\n',sj.iloc[:5,:5])
               
                                  
                                           

 

 

#10-7
sj_bool=(sj['用水时长']>100)&(sj['总用水时长']>120)&(sj['总用水量']>5)
sj_final=sj.loc[sj_bool,:]
sj_final.to_excel("D:/数据分析/sj_final.xlsx",index=False)
print('筛选出候选洗浴事件前的数据形状为:',sj.shape)
print('筛选出候选洗浴事件后的数据形状为:',sj_final.shape)

 

 

#10-8
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import joblib

Xtrain=pd.read_excel("D:/数据分析/sj_final.xlsx")
ytrain=pd.read_excel("D:/数据分析/water_heater_log.xlsx")
test=pd.read_excel("D:/数据分析/test_data.xlsx")

x_train,x_test,y_train,y_test=Xtrain.iloc[:,5:],test.iloc[:,4:-1],\
                              ytrain.iloc[:,-1],test.iloc[:,-1]
stdScaler=StandardScaler().fit(x_train)
x_stdtrain=stdScaler.transform(x_train)
x_stdtest=stdScaler.transform(x_test)
bpnn=MLPClassifier(hidden_layer_sizes=(17,10),max_iter=200,solver='lbfgs',random_state=50)
bpnn.fit(x_stdtrain,y_train)
joblib.dump(bpnn,'./water_heater_nnet.m')
print('构建的模型为;\n',bpnn)

 

 

#10-9
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt

bpnn=joblib.load('./water_heater_nnet.m')
y_pred=bpnn.predict(x_stdtest)
print('神经网络预测结果评价报告:\n',classification_report(y_test,y_pred))
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
fpr,tpr,thresholds=roc_curve(y_pred,y_test)
plt.figure(figsize=(6,4))
plt.plot(fpr,tpr)
plt.title('用户用水事件识别ROC曲线学号3108')
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.savefig('用户用水事件识别ROC曲线.png')
plt.show()

 

标签:数据分析,loc,plt,第十章,sj,pd,水流量,data
From: https://www.cnblogs.com/hxs6/p/17259595.html

相关文章

  • python_数据分析与挖掘实战_洗浴事件
    importpandasaspdimportmatplotlib.pyplotaspltinputfile='./data/original_data.xls'#'./demo/data/original_data.xls'#输入的数据文件data=pd.read_e......
  • 第十章
            ......
  • 第五周数据分析实训
    importpandasaspdimportmatplotlib.pyplotaspltimportnumpyasnpinputfile='E:\桌面\data\original_data.xls'#'./demo/data/original_data.xls'#输入的......
  • 零售数据分析操作篇7:分析售罄率,决定何时做促销
    各位数据的朋友,大家好,我是老周道数据,和你一起,用常人思维+数据分析,通过数据讲故事。 不好意思,又有一段时间没有更新了,借口嘛一样,就是有点忙。没办法,现在还不能靠录视频来吃......
  • R语言用贝叶斯层次模型进行空间数据分析|附代码数据
    阅读全文:http://tecdat.cn/?p=10932最近我们被客户要求撰写关于贝叶斯层次模型的研究报告,包括一些图形和统计输出。在本文中,我将重点介绍使用集成嵌套拉普拉斯近似方法......
  • Excel数据分析学习笔记
                        ......
  • 数据分析之营销管理方法论--用户使用行为分析
    用户使用行为1.为什么要做用户使用行为分析?用户行为数据时指在产品内进行各种操作产生的数据。比如:访问、浏览和行为事件。每个访问时间可由多个浏览事件和点击事件构成......
  • 数据分析之数据分析方法
      常用数据分析方法分类:数据分析方法有很多种,需要根据业务场景中分析目的的不同,选择对应的分析方法,如果你的分析目的是想将复杂的问题变得简单,就可以使用逻辑树分析方......
  • 数据分析之数据建模
    一、什么是数据建模?(1)数据模型,就是在数据层面建立起来的一种逻辑关系的算法集合,该算法集合可以运算未来的同源数据,并产生可预期的结果。通俗说,模型就是算法或公式,如模型y=a......
  • 数据分析第十章实践
    importpandasaspdimportmatplotlib.pyplotaspltinputfile='C:/Users/Lenore/Desktop/data\original_data.xls'#输入的数据文件data=pd.read_excel(inputfi......