首页 > 其他分享 >kafka消息堆积,consumer掉线

kafka消息堆积,consumer掉线

时间:2023-03-22 23:33:42浏览次数:40  
标签:消费 掉线 kafka 线程 超时 poll consumer

注:本文转自:https://www.toutiao.com/article/7160323779812983296/?log_from=5abd712547149_1679497545032

线上kafka消息堆积,所有consumer全部掉线,到底怎么回事?

最近处理了一次线上故障,具体故障表现就是kafka某个topic消息堆积,这个topic的相关consumer全部掉线。

整体排查过程和事后的复盘都很有意思,并且结合本次故障,对kafka使用的最佳实践有了更深刻的理解。

好了,一起来回顾下这次线上故障吧,最佳实践总结放在最后,千万不要错过。

1、现象

  • 线上kafka消息突然开始堆积
  • 消费者应用反馈没有收到消息(没有处理消息的日志)
  • kafka的consumer group上看没有消费者注册
  • 消费者应用和kafka集群最近一周内没有代码、配置相关变更

2、排查过程

服务端、客户端都没有特别的异常日志,kafka其他topic的生产和消费都是正常,所以基本可以判断是客户端消费存在问题。

所以我们重点放在客户端排查上。

1)arthas在线修改日志等级,输出debug

由于客户端并没有明显异常日志,因此只能通过arthas修改应用日志等级,来寻找线索。

果然有比较重要的发现:

2022-10-25 17:36:17,774 DEBUG [org.apache.kafka.clients.consumer.internals.AbstractCoordinator] - [Consumer clientId=consumer-1, groupId=xxxx] Disabling heartbeat thread
 
2022-10-25 17:36:17,773 DEBUG [org.apache.kafka.clients.consumer.internals.AbstractCoordinator] - [Consumer clientId=consumer-1, groupId=xxxx] Sending LeaveGroup request to coordinator xxxxxx (id: 2147483644 rack: null)

看起来是kafka-client自己主动发送消息给kafka集群,进行自我驱逐了。因此consumer都掉线了。

2)arthas查看相关线程状态变量
用arthas vmtool命令进一步看下kafka-client相关线程的状态。

 

 

可以看到 HeartbeatThread线程状态是WAITING,Cordinator状态是UNJOINED。

此时,结合源码看,大概推断是由于消费时间过长,导致客户端自我驱逐了。

于是立刻尝试修改max.poll.records,减少一批拉取的消息数量,同时增大max.poll.interval.ms参数,避免由于拉取间隔时间过长导致自我驱逐。

参数修改上线后,发现consumer确实不掉线了,但是消费一段时间后,还是就停止消费了。

3、最终原因

相关同学去查看了消费逻辑,发现了业务代码中的死循环,确认了最终原因。

消息内容中的一个字段有新的值,触发了消费者消费逻辑的死循环,导致后续消息无法消费。
消费阻塞导致消费者自我驱逐,partition重新reblance,所有消费者逐个自我驱逐。

这里核心涉及到kafka的消费者和kafka之间的保活机制,可以简单了解一下。

 

 

kafka-client会有一个独立线程HeartbeatThread跟kafka集群进行定时心跳,这个线程跟lisenter无关,完全独立。

根据debug日志显示的“Sending LeaveGroup request”信息,我们可以很容易定位到自我驱逐的逻辑。

 

 

HeartbeatThread线程在发送心跳前,会比较一下当前时间跟上次poll时间,一旦大于max.poll.interval.ms 参数,就会发起自我驱逐了。

4、进一步思考

虽然最后原因找到了,但是回顾下整个排查过程,其实并不顺利,主要有两点:

  • kafka-client对某个消息消费超时能否有明确异常?而不是只看到自我驱逐和rebalance
  • 有没有办法通过什么手段发现 消费死循环?

4.1 kafka-client对某个消息消费超时能否有明确异常?

4.1.1 kafka似乎没有类似机制

我们对消费逻辑进行断点,可以很容易看到整个调用链路。

 

 

对消费者来说,主要采用一个线程池来处理每个kafkaListener,一个listener就是一个独立线程。

这个线程会同步处理 poll消息,然后动态代理回调用户自定义的消息消费逻辑,也就是我们在@KafkaListener中写的业务。

 

 

所以,从这里可以知道两件事情。

第一点,如果业务消费逻辑很慢或者卡住了,会影响poll。

第二点,这里没有看到直接设置消费超时的参数,其实也不太好做。

因为这里做了超时中断,那么poll也会被中断,是在同一个线程中。所以要么poll和消费逻辑在两个工作线程,要么中断掉当前线程后,重新起一个线程poll。

所以从业务使用角度来说,可能的实现,还是自己设置业务超时。比较通用的实现,可以是在消费逻辑中,用线程池处理消费逻辑,同时用Future get阻塞超时中断。

google了一下,发现kafka 0.8 曾经有consumer.timeout.ms这个参数,但是现在的版本没有这个参数了,不知道是不是类似的作用。

4.1.2 RocketMQ有点相关机制

然后去看了下RocketMQ是否有相关实现,果然有发现。

在RocketMQ中,可以对consumer设置consumeTimeout,这个超时就跟我们的设想有一点像了。

consumer会启动一个异步线程池对正在消费的消息做定时做 cleanExpiredMsg() 处理。

 

 

注意,如果消息类型是顺序消费(orderly),这个机制就不生效。

如果是并发消费,那么就会进行超时判断,如果超时了,就会将这条消息的信息通过sendMessageBack() 方法发回给broker进行重试。

 

   

如果消息重试超过一定次数,就会进入RocketMQ的死信队列。

spring-kafka其实也有做类似的封装,可以自定义一个死信topic,做异常处理

4.2 有没有办法通过什么手段快速发现死循环?

一般来说,死循环的线程会导致CPU飙高、OOM等现象,在本次故障中,并没有相关异常表现,所以并没有联系到死循环的问题。

那通过这次故障后,对kafka相关机制有了更深刻了解,poll间隔超时很有可能就是消费阻塞甚至死循环导致。

所以,如果下次出现类似问题,消费者停止消费,但是kafkaListener线程还在,可以直接通过arthas的 thread id 命令查看对应线程的调用栈,看看是否有异常方法死循环调用。

5、最佳实践

通过此次故障,我们也可以总结几点kafka使用的最佳实践:

  • 使用消息队列进行消费时,一定需要多考虑异常情况,包括幂等、耗时处理(甚至死循环)的情况。
  • 尽量提高客户端的消费速度,消费逻辑另起线程进行处理,并最好做超时控制。
  • 减少Group订阅Topic的数量,一个Group订阅的Topic最好不要超过5个,建议一个Group只订阅一个Topic。
  • 参考以下说明调整参数值:max.poll.records:降低该参数值,建议远远小于<单个线程每秒消费的条数> * <消费线程的个数> * <max.poll.interval.ms>的积。max.poll.interval.ms: 该值要大于<max.poll.records> / (<单个线程每秒消费的条数> * <消费线程的个数>)的值。

标签:消费,掉线,kafka,线程,超时,poll,consumer
From: https://www.cnblogs.com/wk-missQ1/p/17245904.html

相关文章

  • Linux 部署:kafka(虚拟机集群)
    参考文档:https://blog.csdn.net/wt334502157/article/details/116518259目录1.节点规划2.部署kafka集群3.修改配置4.附录1.节点规划节点ipvm8110.99.0.8......
  • kafka的基本概念
    1BrokerKafka集群包含一个或多个服务器,服务器节点称为broker。如图,我们有2个broker,6个partition,则会均分;如果只有1个partition,那么另一个broker会闲置。理想情况,我们......
  • golang解决kafka消息重复发送和重复消费
    1、解决消息重复发送当使用Kafka生产者发送消息时,可以设置消息的Key,使用Key来保证相同Key的消息不会被重复发送。在发送消息时,可以使用带Key的消息发送方式,如下所示:msg......
  • 解决Kafka总是丢消息的方法和原理
    注:本文转自:https://www.toutiao.com/article/7210953985497678347/?log_from=f0ecce317abb8_1679450040551引入MQ消息中间件最直接的目的:系统解耦以及流量控制(削峰填谷)......
  • python处理kafka数据
    1、程序作用:从多个topic中读取数据--处理数据--写入新的kafkatopic中pip3installkafka-pythonimportjsonfromkafkaimportKafkaProducerfromkafkaimportKafk......
  • docker安装kafka并测试
    #1.下载docker镜像dockerpullwurstmeister/zookeeperdockerpullwurstmeister/kafka#2.启动zookeeper(单机方式)dockerrun-d--namezookeeper-p2181:2181-tw......
  • kafka消费消息-java版-demo
    @SpringBootApplicationpublicclassCcApplication{publicstaticvoidmain(String[]args){SpringApplication.run(CcApplication.class,args);/......
  • kafka简介
    Kafka特点Kafka已被多家不同类型的公司作为多种类型的数据管道和消息系统使用。行为流数据是几乎所有站点在对其网站使用情况做报表时都要用到的数据中最常规的部分。包......
  • Kafka——Kafka的原理解析(知识脑图)
    摘要主要讲解Kafka的基本的原理和相关的集群的原理以及MQ的主要使用场景。ApacheKafka是一个分布式发布-订阅消息系统。是大数据领域消息队列中唯一的王者。最初由linke......
  • Kafka——kafka的基本概念和原理(1)
    摘要Kafka起初是由LinkedIn公司采用Scala语言开发的一个多分区、多副本且基于ZooKeeper协调的分布式消息系统,现已被捐献给Apache基金会。目前Kafka已经定位为一个分布式流式......