标签:zL %. 函数 -- double zf long C语言 complex
C语言函数大全
本篇介绍C语言函数中 c 开头的函数之复数篇
1. cabs,cabsf,cabsl
1.1 函数说明
函数声明 |
函数功能 |
double cabs (double complex z); |
计算复数 z 的绝对值(double) |
float cabsf (float complex z); |
计算复数 z 的绝对值(float) |
long double cabsl (long double complex z); |
计算复数 z 的绝对值(long double) |
1.2 演示示例
// Huazie
#include <stdio.h>
#include <complex.h>
int main(void)
{
double complex z;
double x = 2.0, y = 2.0, val;
z = x + y * I; // I 代指 虚数单位 i
val = cabs(z); // 计算复数 z 的绝对值
float complex zf;
float xf = 2.0, yf = 2.0, valf;
zf = xf + yf * I;
valf = cabsf(zf);
long double complex zL;
long double xL = 2.0, yL = 2.0, valL;
zL = xL + yL * I;
valL = cabsl(zL);
printf("The absolute value of (%.4lf + %.4lfi) is %.20lf\n", x, y, val);
printf("The absolute value of (%.4f + %.4fi) is %.20f\n", xf, yf, valf);
printf("The absolute value of (%.4Lf + %.4Lfi) is %.20Lf", xL, yL, valL);
return 0;
}
1.3 运行结果
2. creal,crealf,creall
2.1 函数说明
函数声明 |
函数功能 |
double creal (double complex z); |
计算复数z的实部(double) |
float crealf (float complex z); |
计算复数z的实部(float) |
long double creall (long double complex z); |
计算复数z的反余弦(long double) |
2.2 演示示例
// Huazie
#include <stdio.h>
#include <complex.h>
int main(void)
{
double complex z;
double x = 2.0, y = 1.0;
z = x + y * I; // I 代指 虚数单位 i
float complex zf;
float xf = 3.0, yf = 1.0;
zf = xf + yf * I;
long double complex zL;
long double xL = 4.0, yL = 1.0;
zL = xL + yL * I;
printf("The real part of (%.4lf + %.4lfi) is %.4lf\n", x, y, creal(z));
printf("The real part of (%.4f + %.4fi) is %.4f\n", xf, yf, crealf(zf));
printf("The real part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, creall(zL));
return 0;
}
2.3 运行结果
3. cimag,cimagf,cimagl
3.1 函数说明
函数声明 |
函数功能 |
double cimag (double complex z); |
计算复数z的虚部(double) |
float cimagf (float complex z); |
计算复数z的虚部(float) |
long double cimagl (long double complex z); |
计算复数z的虚部(long double) |
3.2 演示示例
// Huazie
#include <stdio.h>
#include <complex.h>
int main(void)
{
double complex z;
double x = 1.0, y = 2.0;
z = x + y * I; // I 代指 虚数单位 i
float complex zf;
float xf = 1.0, yf = 3.0;
zf = xf + yf * I;
long double complex zL;
long double xL = 1.0, yL = 4.0;
zL = xL + yL * I;
printf("The imaginary part of (%.4lf + %.4lfi) is %.4lf\n", x, y, cimag(z));
printf("The imaginary part of (%.4f + %.4fi) is %.4f\n", xf, yf, cimagf(zf));
printf("The imaginary part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, cimagl(zL));
return 0;
}
3.3 运行结果
4. carg,cargf,cargl
4.1 函数说明
函数声明 |
函数功能 |
double carg (double complex z); |
计算复数z的相位角 (double) |
float cargf (float complex z); |
计算复数z的相位角(float) |
long double cargl (long double complex z); |
计算复数z的相位角(long double) |
4.2 演示示例
#include <stdio.h>
#include <complex.h>
int main(void)
{
double complex z;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
float complex zf;
zf = 1.0f + 2.0f * I;
long double complex zL;
zL = (long double) 1.0 + (long double) 2.0 * I;
printf("The phase angle of (%.4lf + %.4lfi) is %.60lf\n", creal(z), cimag(z), carg(z));
printf("The phase angle of (%.4f + %.4fi) is %.60f\n", crealf(zf), cimagf(zf), cargf(zf));
printf("The phase angle of (%.4Lf + %.4Lfi) is %.60Lf", creall(zL), cimagl(zL), cargl(zL));
return 0;
}
4.3 运行结果
5. cacos,cacosf,cacosl
5.1 函数说明
函数声明 |
函数功能 |
double complex cacos (double complex z); |
计算复数z的反余弦 (double complex) |
float complex cacosf (float complex z); |
计算复数z的反余弦(float complex) |
long double complex cacosl (long double complex z); |
计算复数z的反余弦(long double complex) |
5.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcacos;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcacos = cacos(z); // 计算复数z的反余弦
float complex zf, zcacosf;
zf = 1.0f + 2.0f * I;
zcacosf = cacosf(zf);
long double complex zL, zcacosl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcacosl = cacosl(zL);
double zimag = cimag(zcacos);
float zimagf = cimagf(zcacosf);
long double zimagl = cimagl(zcacosl);
if (zimag < 0)
printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacos), fabs(zimag));
else
printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacos), zimag);
if (zimagf < 0)
printf("The arc cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), fabsf(zimagf));
else
printf("The arc cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), zimagf);
if (zimagl < 0)
printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), fabsl(zimagl));
else
printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), zimagl);
return 0;
}
5.3 运行结果
6. cacosh,cacoshf,cacoshl
6.1 函数说明
函数声明 |
函数功能 |
double complex cacosh (double complex z); |
计算复数z的反双曲余弦(double complex) |
float complex cacoshf (float complex z); |
计算复数z的反双曲余弦(float complex) |
long double complex cacoshl (long double complex z); |
计算复数z的反双曲余弦(long double complex) |
6.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcacosh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcacosh = cacosh(z); // 反双曲余弦
float complex zf, zcacoshf;
zf = 1.0f + 2.0f * I;
zcacoshf = cacoshf(zf);
long double complex zL, zcacoshl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcacoshl = cacoshl(zL);
double zimag = cimag(zcacosh);
float zimagf = cimagf(zcacoshf);
long double zimagl = cimagl(zcacoshl);
if (zimag < 0)
printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), fabs(zimag));
else
printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), zimag);
if (zimagf < 0)
printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), fabsf(zimagf));
else
printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), zimagf);
if (zimagl < 0)
printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), fabsl(zimagl));
else
printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), zimagl);
return 0;
}
6.3 运行结果
7. casin,casinf,casinl
7.1 函数说明
函数声明 |
函数功能 |
double complex casin (double complex z); |
计算复数z的反正弦(double complex) |
float complex casinf (float complex z); |
计算复数z的反正弦(float complex) |
long double complex casinl (long double complex z); |
计算复数z的反正弦(long double complex) |
7.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcasin;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcasin = casin(z); // 反正弦
float complex zf, zcasinf;
zf = 1.0f + 2.0f * I;
zcasinf = casinf(zf);
long double complex zL, zcasinl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcasinl = casinl(zL);
double zimag = cimag(zcasin);
float zimagf = cimagf(zcasinf);
long double zimagl = cimagl(zcasinl);
if (zimag < 0)
printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasin), fabs(zimag));
else
printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasin), zimag);
if (zimagf < 0)
printf("The arcsine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), fabsf(zimagf));
else
printf("The arcsine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), zimagf);
if (zimagl < 0)
printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), fabsl(zimagl));
else
printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), zimagl);
return 0;
}
7.3 运行结果
8. casinh,casinhf,casinhl
8.1 函数说明
函数声明 |
函数功能 |
double complex casinh (double complex z); |
计算复数z的反双曲正弦(double complex) |
float complex casinhf (float complex z); |
计算复数z的反双曲正弦(float complex) |
long double complex casinhl (long double complex z); |
计算复数z的反双曲正弦(long double complex) |
8.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcasinh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcasinh = casinh(z); // 反双曲正弦
float complex zf, zcasinhf;
zf = 1.0f + 2.0f * I;
zcasinhf = casinhf(zf);
long double complex zL, zcasinhl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcasinhl = casinhl(zL);
double zimag = cimag(zcasinh);
float zimagf = cimagf(zcasinhf);
long double zimagl = cimagl(zcasinhl);
if (zimag < 0)
printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), fabs(zimag));
else
printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), zimag);
if (zimagf < 0)
printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), fabsf(zimagf));
else
printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), zimagf);
if (zimagl < 0)
printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), fabsl(zimagl));
else
printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), zimagl);
return 0;
}
8.3 运行结果
9. catan,catanf,catanl
9.1 函数说明
函数声明 |
函数功能 |
double complex catan (double complex z); |
计算复数z的反正切(double complex) |
float complex catanf (float complex z); |
计算复数z的反正切(float complex) |
long double complex catanl (long double complex z); |
计算复数z的反正切(long double complex) |
9.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcatan;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcatan = catan(z); // 反正切
float complex zf, zcatanf;
zf = 1.0f + 2.0f * I;
zcatanf = catanf(zf);
long double complex zL, zcatanl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcatanl = catanl(zL);
double zimag = cimag(zcatan);
float zimagf = cimagf(zcatanf);
long double zimagl = cimagl(zcatanl);
if (zimag < 0)
printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatan), fabs(zimag));
else
printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatan), zimag);
if (zimagf < 0)
printf("The arc tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), fabsf(zimagf));
else
printf("The arc tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), zimagf);
if (zimagl < 0)
printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), fabsl(zimagl));
else
printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), zimagl);
return 0;
}
9.3 运行结果
10. catanh,catanhf,catanhl
10.1 函数说明
函数声明 |
函数功能 |
double complex catanh (double complex z); |
计算复数z的反双曲正切(double complex) |
float complex catanhf (float complex z); |
计算复数z的反双曲正切(float complex) |
long double complex catanhl (long double complex z); |
计算复数z的反双曲正切(long double complex) |
10.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcatanh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcatanh = catanh(z); // 反双曲正切
float complex zf, zcatanhf;
zf = 1.0f + 2.0f * I;
zcatanhf = catanhf(zf);
long double complex zL, zcatanhl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcatanhl = catanhl(zL);
double zimag = cimag(zcatanh);
float zimagf = cimagf(zcatanhf);
long double zimagl = cimagl(zcatanhl);
if (zimag < 0)
printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), fabs(zimag));
else
printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), zimag);
if (zimagf < 0)
printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), fabsf(zimagf));
else
printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), zimagf);
if (zimagl < 0)
printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), fabsl(zimagl));
else
printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), zimagl);
return 0;
}
10.3 运行结果
11. ccos,ccosf,ccosl
11.1 函数说明
函数声明 |
函数功能 |
double complex ccos (double complex z); |
计算复数z的余弦(double complex) |
float complex ccosf (float complex z); |
计算复数z的余弦(float complex) |
long double complex ccosl (long double complex z); |
计算复数z的余弦(long double complex) |
11.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zccos;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zccos = ccos(z); // 余弦
float complex zf, zccosf;
zf = 1.0f + 2.0f * I;
zccosf = ccosf(zf);
long double complex zL, zccosl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zccosl = ccosl(zL);
double zimag = cimag(zccos);
float zimagf = cimagf(zccosf);
long double zimagl = cimagl(zccosl);
if (zimag < 0)
printf("The cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccos), fabs(zimag));
else
printf("The cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccos), zimag);
if (zimagf < 0)
printf("The cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), fabsf(zimagf));
else
printf("The cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), zimagf);
if (zimagl < 0)
printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), fabsl(zimagl));
else
printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), zimagl);
return 0;
}
11.3 运行结果
12. ccosh,ccoshf,ccoshl
12.1 函数说明
函数声明 |
函数功能 |
double complex ccosh (double complex z); |
计算复数z的双曲余弦(double complex) |
float complex ccoshf (float complex z); |
计算复数z的双曲余弦(float complex) |
long double complex ccoshl (long double complex z); |
计算复数z的双曲余弦(long double complex) |
12.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zccosh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zccosh = ccosh(z); // 双曲余弦
float complex zf, zccoshf;
zf = 1.0f + 2.0f * I;
zccoshf = ccoshf(zf);
long double complex zL, zccoshl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zccoshl = ccoshl(zL);
double zimag = cimag(zccosh);
float zimagf = cimagf(zccoshf);
long double zimagl = cimagl(zccoshl);
if (zimag < 0)
printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccosh), fabs(zimag));
else
printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccosh), zimag);
if (zimagf < 0)
printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), fabsf(zimagf));
else
printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), zimagf);
if (zimagl < 0)
printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), fabsl(zimagl));
else
printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), zimagl);
return 0;
}
12.3 运行结果
13. csin,csinf,csinl
13.1 函数说明
函数声明 |
函数功能 |
double complex csin (double complex z); |
计算复数z的正弦(double complex) |
float complex csinf (float complex z); |
计算复数z的正弦(float complex) |
long double complex csinl (long double complex z); |
计算复数z的正弦(long double complex) |
13.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcsin;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcsin = csin(z); // 正弦
float complex zf, zcsinf;
zf = 1.0f + 2.0f * I;
zcsinf = csinf(zf);
long double complex zL, zcsinl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcsinl = csinl(zL);
double zimag = cimag(zcsin);
float zimagf = cimagf(zcsinf);
long double zimagl = cimagl(zcsinl);
if (zimag < 0)
printf("The sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsin), fabs(zimag));
else
printf("The sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsin), zimag);
if (zimagf < 0)
printf("The sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), fabsf(zimagf));
else
printf("The sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), zimagf);
if (zimagl < 0)
printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), fabsl(zimagl));
else
printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), zimagl);
return 0;
}
13.3 运行结果
14. csinh,csinhf,csinhl
14.1 函数说明
函数声明 |
函数功能 |
double complex csinh (double complex z); |
计算复数z的双曲正弦(double complex) |
float complex csinhf (float complex z); |
计算复数z的双曲正弦(float complex) |
long double complex csinhl (long double complex z); |
计算复数z的双曲正弦(long double complex) |
14.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcsinh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcsinh = csinh(z); // 双曲正弦
float complex zf, zcsinhf;
zf = 1.0f + 2.0f * I;
zcsinhf = csinhf(zf);
long double complex zL, zcsinhl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcsinhl = csinhl(zL);
double zimag = cimag(zcsinh);
float zimagf = cimagf(zcsinhf);
long double zimagl = cimagl(zcsinhl);
if (zimag < 0)
printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), fabs(zimag));
else
printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), zimag);
if (zimagf < 0)
printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), fabsf(zimagf));
else
printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), zimagf);
if (zimagl < 0)
printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), fabsl(zimagl));
else
printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), zimagl);
return 0;
}
14.3 运行结果
15. ctan,ctanf,ctanl
15.1 函数说明
函数声明 |
函数功能 |
double complex ctan (double complex z); |
计算复数z的正切(double complex) |
float complex ctanf (float complex z); |
计算复数z的正切(float complex) |
long double complex ctanl (long double complex z); |
计算复数z的正切(long double complex) |
15.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zctan;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zctan = ctan(z); // 正切
float complex zf, zctanf;
zf = 1.0f + 2.0f * I;
zctanf = ctanf(zf);
long double complex zL, zctanl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zctanl = ctanl(zL);
double zimag = cimag(zctan);
float zimagf = cimagf(zctanf);
long double zimagl = cimagl(zctanl);
if (zimag < 0)
printf("The tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctan), fabs(zimag));
else
printf("The tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctan), zimag);
if (zimagf < 0)
printf("The tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), fabsf(zimagf));
else
printf("The tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), zimagf);
if (zimagl < 0)
printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), fabsl(zimagl));
else
printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), zimagl);
return 0;
}
15.3 运行结果
16. ctanh,ctanhf,ctanhl
16.1 函数说明
函数声明 |
函数功能 |
double complex ctanh (double complex z); |
计算复数z的双曲正切(double complex) |
float complex ctanhf (float complex z); |
计算复数z的双曲正切(float complex) |
long double complex ctanhl (long double complex z); |
计算复数z的双曲正切(long double complex) |
16.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zctanh;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zctanh = ctanh(z); // 双曲正切
float complex zf, zctanhf;
zf = 1.0f + 2.0f * I;
zctanhf = ctanhf(zf);
long double complex zL, zctanhl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zctanhl = ctanhl(zL);
double zimag = cimag(zctanh);
float zimagf = cimagf(zctanhf);
long double zimagl = cimagl(zctanhl);
if (zimag < 0)
printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctanh), fabs(zimag));
else
printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctanh), zimag);
if (zimagf < 0)
printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), fabsf(zimagf));
else
printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), zimagf);
if (zimagl < 0)
printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), fabsl(zimagl));
else
printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), zimagl);
return 0;
}
16.3 运行结果
17. cexp,cexpf,cexpl
17.1 函数说明
函数声明 |
函数功能 |
double complex cexp (double complex z); |
计算复数z的指数基数e(double complex) |
float complex cexpf (float complex z); |
计算复数z的指数基数e(float complex) |
long double complex cexpl (long double complex z); |
计算复数z的指数基数e(long double complex) |
17.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcexp;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcexp = cexp(z); // 指数基数e
float complex zf, zcexpf;
zf = 1.0f + 2.0f * I;
zcexpf = cexpf(zf);
long double complex zL, zcexpl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zcexpl = cexpl(zL);
double zimag = cimag(zcexp);
float zimagf = cimagf(zcexpf);
long double zimagl = cimagl(zcexpl);
if (zimag < 0)
printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcexp), fabs(zimag));
else
printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcexp), zimag);
if (zimagf < 0)
printf("The base-e exponential of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), fabsf(zimagf));
else
printf("The base-e exponential of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), zimagf);
if (zimagl < 0)
printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), fabsl(zimagl));
else
printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), zimagl);
return 0;
}
17.3 运行结果
18. clog,clogf,clogl
18.1 函数说明
函数声明 |
函数功能 |
double complex clog (double complex z); |
计算复数z的自然对数(以e为底)(double complex) |
float complex clogf (float complex z); |
计算复数z的自然对数(以e为底)(float complex) |
long double complex clogl (long double complex z); |
计算复数z的自然对数(以e为底)(long double complex) |
18.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zclog;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zclog = clog(z); // 自然对数(以e为底)
float complex zf, zclogf;
zf = 1.0f + 2.0f * I;
zclogf = clogf(zf);
long double complex zL, zclogl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zclogl = clogl(zL);
double zimag = cimag(zclog);
float zimagf = cimagf(zclogf);
long double zimagl = cimagl(zclogl);
if (zimag < 0)
printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zclog), fabs(zimag));
else
printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zclog), zimag);
if (zimagf < 0)
printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), fabsf(zimagf));
else
printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), zimagf);
if (zimagl < 0)
printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), fabsl(zimagl));
else
printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), zimagl);
return 0;
}
18.3 运行结果
19. conj,conjf,conjl
19.1 函数说明
函数声明 |
函数功能 |
double complex conj (double complex z); |
计算复数z的共轭(double complex) |
float complex conjf (float complex z); |
计算复数z的共轭(float complex) |
long double complex conjl (long double complex z); |
计算复数z的共轭(long double complex) |
19.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zconj;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zconj = conj(z); // 共轭
float complex zf, zconjf;
zf = 1.0f + 2.0f * I;
zconjf = conjf(zf);
long double complex zL, zconjl;
zL = (long double) 1.0 + (long double) 2.0 * I;
zconjl = conjl(zL);
double zimag = cimag(zconj);
float zimagf = cimagf(zconjf);
long double zimagl = cimagl(zconjl);
if (zimag < 0)
printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf - %.4lfi)\n", creal(z), cimag(z), creal(zconj), fabs(zimag));
else
printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf + %.4lfi)\n", creal(z), cimag(z), creal(zconj), zimag);
if (zimagf < 0)
printf("The conjugate of (%.4f + %.4fi) is (%.4f - %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), fabsf(zimagf));
else
printf("The conjugate of (%.4f + %.4fi) is (%.4f + %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), zimagf);
if (zimagl < 0)
printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf - %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), fabsl(zimagl));
else
printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf + %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), zimagl);
return 0;
}
19.3 运行结果
20. cpow,cpowf,cpowl
20.1 函数说明
函数声明 |
函数功能 |
double complex cpow (double complex x, double complex y); |
计算x的y次方值 (double complex) |
float complex cpowf (float complex x, float complex y); |
计算x的y次方值 (float complex) |
long double complex cpowl (long double complex x, long double complex y); |
计算x的y次方值 (double complex) |
20.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex x, y, z;
x = 1.0 + 2.0 * I; // I 代指 虚数单位 i
y = 2.0 + 1.0 * I;
z = cpow(x, y); // x的y次方值
float complex xf, yf, zf;
xf = 1.0f + 2.0f * I;
yf = 2.0f + 1.0f * I;
zf = cpowf(xf, yf);
long double complex xL, yL, zL;
xL = (long double) 1.0 + (long double) 2.0 * I;
yL = (long double) 2.0 + (long double) 1.0 * I;
zL = cpowl(xL, yL);
double zimag = cimag(z);
float zimagf = cimagf(zf);
long double zimagl = cimagl(zL);
if (zimag < 0)
printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf - %.20lfi)\n",
creal(x), cimag(x), creal(y), cimag(y), creal(z), fabs(zimag));
else
printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf + %.20lfi)\n",
creal(x), cimag(x), creal(y), cimag(y), creal(z), zimag);
if (zimagf < 0)
printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f - %.20fi)\n",
crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), fabs(zimagf));
else
printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f + %.20fi)\n",
crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), zimagf);
if (zimagl < 0)
printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf - %.20Lfi)\n",
creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), fabs(zimagl));
else
printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf + %.20Lfi)\n",
creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), zimagl);
return 0;
}
20.3 运行结果
21. cproj,cprojf,cprojl
21.1 函数说明
函数声明 |
函数功能 |
double complex cproj (double complex z); |
计算复数z在黎曼球面上的投影(double complex) |
float complex cprojf (float complex z); |
计算复数z在黎曼球面上的投影(float complex) |
long double complex cprojl (long double complex z); |
计算复数z在黎曼球面上的投影(long double complex) |
21.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcproj;
z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
zcproj = cproj(z); // 计算复数z在黎曼球面上的投影
float complex zf, zcprojf;
zf = NAN + INFINITY * I;
zcprojf = cprojf(zf);
long double complex zL, zcprojl;
zL = INFINITY + (long double) 3.0 * I;
zcprojl = cprojl(zL); // 结果相当于 INFINITY + i*copysign(0.0, cimag(z)).
double zimag = cimag(zcproj);
float zimagf = cimagf(zcprojf);
long double zimagl = cimagl(zcprojl);
if (zimag < 0)
printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf - %.4lf i)\n", creal(z), cimag(z), creal(zcproj), fabs(zimag));
else
printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf + %.4lf i)\n", creal(z), cimag(z), creal(zcproj), zimag);
if (zimagf < 0)
printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f - %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), fabsf(zimagf));
else
printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f + %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), zimagf);
if (zimagl < 0)
printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf - %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), fabsl(zimagl));
else
printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf + %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), zimagl);
return 0;
}
21.3 运行结果
22. csqrt,csqrtf,csqrtl
22.1 函数说明
函数声明 |
函数功能 |
double complex csqrt (double complex z); |
计算复数z的平方根(double complex) |
float complex csqrtf (float complex z); |
计算复数z的平方根(float complex) |
long double complex csqrtl (long double complex z); |
计算复数z的平方根(long double complex) |
22.2 演示示例
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main(void)
{
double complex z, zcsqrt;
z = 9.0 + 9.0 * I; // I 代指 虚数单位 i
zcsqrt = csqrt(z); // 平方根
float complex zf, zcsqrtf;
zf = 4.0f + 4.0f * I;
zcsqrtf = csqrtf(zf);
long double complex zL, zcsqrtl;
zL = (long double) 16.0 + (long double) 16.0 * I;
zcsqrtl = csqrtl(zL);
double zimag = cimag(zcsqrt);
float zimagf = cimagf(zcsqrtf);
long double zimagl = cimagl(zcsqrtl);
if (zimag < 0)
printf("The square root of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), fabs(zimag));
else
printf("The square root of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), zimag);
if (zimagf < 0)
printf("The square root of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), fabsf(zimagf));
else
printf("The square root of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), zimagf);
if (zimagl < 0)
printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), fabsl(zimagl));
else
printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), zimagl);
return 0;
}
22.3 运行结果
参考
- 【MATH-标准C库】
标签:zL,
%.,
函数,
--,
double,
zf,
long,
C语言,
complex
From: https://blog.51cto.com/huazie/6142209