首页 > 其他分享 >C语言函数大全--c开头的函数之复数篇

C语言函数大全--c开头的函数之复数篇

时间:2023-03-22 10:31:39浏览次数:48  
标签:zL %. 函数 -- double zf long C语言 complex

C语言函数大全

本篇介绍C语言函数中 c 开头的函数之复数篇

1. cabs,cabsf,cabsl

1.1 函数说明

函数声明 函数功能
double cabs (double complex z); 计算复数 z 的绝对值(double)
float cabsf (float complex z); 计算复数 z 的绝对值(float)
long double cabsl (long double complex z); 计算复数 z 的绝对值(long double)

1.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
    double complex z;
    double x = 2.0, y = 2.0, val;
    z = x + y * I; // I 代指 虚数单位 i
    val = cabs(z); // 计算复数 z 的绝对值

    float complex zf;
    float xf = 2.0, yf = 2.0, valf;
    zf = xf + yf * I;
    valf = cabsf(zf);

    long double complex zL;
    long double xL = 2.0, yL = 2.0, valL;
    zL = xL + yL * I;
    valL = cabsl(zL);
	
    printf("The absolute value of (%.4lf + %.4lfi) is %.20lf\n", x, y, val);
    printf("The absolute value of (%.4f + %.4fi) is %.20f\n", xf, yf, valf);
    printf("The absolute value of (%.4Lf + %.4Lfi) is %.20Lf", xL, yL, valL);

    return 0;
}

1.3 运行结果

在这里插入图片描述

2. creal,crealf,creall

2.1 函数说明

函数声明 函数功能
double creal (double complex z); 计算复数z的实部(double)
float crealf (float complex z); 计算复数z的实部(float)
long double creall (long double complex z); 计算复数z的反余弦(long double)

2.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
    double complex z;
    double x = 2.0, y = 1.0;
    z = x + y * I; // I 代指 虚数单位 i

    float complex zf;
    float xf = 3.0, yf = 1.0;
    zf = xf + yf * I;

    long double complex zL;
    long double xL = 4.0, yL = 1.0;
    zL = xL + yL * I;

    printf("The real part of (%.4lf + %.4lfi) is %.4lf\n", x, y, creal(z));
    printf("The real part of (%.4f + %.4fi) is %.4f\n", xf, yf, crealf(zf));
    printf("The real part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, creall(zL));

    return 0;
}

2.3 运行结果

在这里插入图片描述

3. cimag,cimagf,cimagl

3.1 函数说明

函数声明 函数功能
double cimag (double complex z); 计算复数z的虚部(double)
float cimagf (float complex z); 计算复数z的虚部(float)
long double cimagl (long double complex z); 计算复数z的虚部(long double)

3.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
    double complex z;
    double x = 1.0, y = 2.0;
    z = x + y * I; // I 代指 虚数单位 i

    float complex zf;
    float xf = 1.0, yf = 3.0;
    zf = xf + yf * I;

    long double complex zL;
    long double xL = 1.0, yL = 4.0;
    zL = xL + yL * I;

    printf("The imaginary part of (%.4lf + %.4lfi) is %.4lf\n", x, y, cimag(z));
    printf("The imaginary part of (%.4f + %.4fi) is %.4f\n", xf, yf, cimagf(zf));
    printf("The imaginary part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, cimagl(zL));

    return 0;
}

3.3 运行结果

在这里插入图片描述

4. carg,cargf,cargl

4.1 函数说明

函数声明 函数功能
double carg (double complex z); 计算复数z的相位角 (double)
float cargf (float complex z); 计算复数z的相位角(float)
long double cargl (long double complex z); 计算复数z的相位角(long double)

4.2 演示示例

#include <stdio.h>
#include <complex.h>

int main(void)
{
    double complex z;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i

    float complex zf;
    zf = 1.0f + 2.0f * I;

    long double complex zL;
    zL = (long double) 1.0 + (long double) 2.0 * I;

    printf("The phase angle of (%.4lf + %.4lfi) is %.60lf\n", creal(z), cimag(z), carg(z));
    printf("The phase angle of (%.4f + %.4fi) is %.60f\n", crealf(zf), cimagf(zf), cargf(zf));
    printf("The phase angle of (%.4Lf + %.4Lfi) is %.60Lf", creall(zL), cimagl(zL), cargl(zL));

    return 0;
}

4.3 运行结果

在这里插入图片描述

5. cacos,cacosf,cacosl

5.1 函数说明

函数声明 函数功能
double complex cacos (double complex z); 计算复数z的反余弦 (double complex)
float complex cacosf (float complex z); 计算复数z的反余弦(float complex)
long double complex cacosl (long double complex z); 计算复数z的反余弦(long double complex)

5.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcacos;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcacos = cacos(z); // 计算复数z的反余弦

    float complex zf, zcacosf;
    zf = 1.0f + 2.0f * I;
    zcacosf = cacosf(zf);

    long double complex zL, zcacosl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcacosl = cacosl(zL);

    double zimag = cimag(zcacos);
    float zimagf = cimagf(zcacosf);
    long double zimagl = cimagl(zcacosl);
    if (zimag < 0) 
        printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacos), fabs(zimag));
    else 
        printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacos), zimag);       

    if (zimagf < 0) 
        printf("The arc cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), fabsf(zimagf));
    else 
        printf("The arc cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), zimagf);

    if (zimagl < 0) 
        printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), fabsl(zimagl));
    else 
        printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), zimagl);
    return 0;
}

5.3 运行结果

在这里插入图片描述

6. cacosh,cacoshf,cacoshl

6.1 函数说明

函数声明 函数功能
double complex cacosh (double complex z); 计算复数z的反双曲余弦(double complex)
float complex cacoshf (float complex z); 计算复数z的反双曲余弦(float complex)
long double complex cacoshl (long double complex z); 计算复数z的反双曲余弦(long double complex)

6.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcacosh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcacosh = cacosh(z); // 反双曲余弦

    float complex zf, zcacoshf;
    zf = 1.0f + 2.0f * I;
    zcacoshf = cacoshf(zf);

    long double complex zL, zcacoshl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcacoshl = cacoshl(zL);

    double zimag = cimag(zcacosh);
    float zimagf = cimagf(zcacoshf);
    long double zimagl = cimagl(zcacoshl);
    if (zimag < 0) 
        printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), fabs(zimag));
    else 
        printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), zimagl);
    return 0;
}

6.3 运行结果

在这里插入图片描述

7. casin,casinf,casinl

7.1 函数说明

函数声明 函数功能
double complex casin (double complex z); 计算复数z的反正弦(double complex)
float complex casinf (float complex z); 计算复数z的反正弦(float complex)
long double complex casinl (long double complex z); 计算复数z的反正弦(long double complex)

7.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcasin;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcasin = casin(z); // 反正弦

    float complex zf, zcasinf;
    zf = 1.0f + 2.0f * I;
    zcasinf = casinf(zf);

    long double complex zL, zcasinl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcasinl = casinl(zL);

    double zimag = cimag(zcasin);
    float zimagf = cimagf(zcasinf);
    long double zimagl = cimagl(zcasinl);
    if (zimag < 0) 
        printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasin), fabs(zimag));
    else 
        printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasin), zimag);       

    if (zimagf < 0) 
        printf("The arcsine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), fabsf(zimagf));
    else 
        printf("The arcsine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), zimagf);

    if (zimagl < 0) 
        printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), fabsl(zimagl));
    else 
        printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), zimagl);
    return 0;
}

7.3 运行结果

在这里插入图片描述

8. casinh,casinhf,casinhl

8.1 函数说明

函数声明 函数功能
double complex casinh (double complex z); 计算复数z的反双曲正弦(double complex)
float complex casinhf (float complex z); 计算复数z的反双曲正弦(float complex)
long double complex casinhl (long double complex z); 计算复数z的反双曲正弦(long double complex)

8.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcasinh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcasinh = casinh(z); // 反双曲正弦

    float complex zf, zcasinhf;
    zf = 1.0f + 2.0f * I;
    zcasinhf = casinhf(zf);

    long double complex zL, zcasinhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcasinhl = casinhl(zL);

    double zimag = cimag(zcasinh);
    float zimagf = cimagf(zcasinhf);
    long double zimagl = cimagl(zcasinhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), fabs(zimag));
    else 
        printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), zimagl);
    return 0;
}

8.3 运行结果

在这里插入图片描述

9. catan,catanf,catanl

9.1 函数说明

函数声明 函数功能
double complex catan (double complex z); 计算复数z的反正切(double complex)
float complex catanf (float complex z); 计算复数z的反正切(float complex)
long double complex catanl (long double complex z); 计算复数z的反正切(long double complex)

9.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcatan;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcatan = catan(z); // 反正切

    float complex zf, zcatanf;
    zf = 1.0f + 2.0f * I;
    zcatanf = catanf(zf);

    long double complex zL, zcatanl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcatanl = catanl(zL);

    double zimag = cimag(zcatan);
    float zimagf = cimagf(zcatanf);
    long double zimagl = cimagl(zcatanl);
    if (zimag < 0) 
        printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatan), fabs(zimag));
    else 
        printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatan), zimag);       

    if (zimagf < 0) 
        printf("The arc tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), fabsf(zimagf));
    else 
        printf("The arc tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), zimagf);

    if (zimagl < 0) 
        printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), fabsl(zimagl));
    else 
        printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), zimagl);
    return 0;
}

9.3 运行结果

在这里插入图片描述

10. catanh,catanhf,catanhl

10.1 函数说明

函数声明 函数功能
double complex catanh (double complex z); 计算复数z的反双曲正切(double complex)
float complex catanhf (float complex z); 计算复数z的反双曲正切(float complex)
long double complex catanhl (long double complex z); 计算复数z的反双曲正切(long double complex)

10.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcatanh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcatanh = catanh(z); // 反双曲正切

    float complex zf, zcatanhf;
    zf = 1.0f + 2.0f * I;
    zcatanhf = catanhf(zf);

    long double complex zL, zcatanhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcatanhl = catanhl(zL);

    double zimag = cimag(zcatanh);
    float zimagf = cimagf(zcatanhf);
    long double zimagl = cimagl(zcatanhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), fabs(zimag));
    else 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), zimagl);
    return 0;
}

10.3 运行结果

在这里插入图片描述

11. ccos,ccosf,ccosl

11.1 函数说明

函数声明 函数功能
double complex ccos (double complex z); 计算复数z的余弦(double complex)
float complex ccosf (float complex z); 计算复数z的余弦(float complex)
long double complex ccosl (long double complex z); 计算复数z的余弦(long double complex)

11.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zccos;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zccos = ccos(z); // 余弦

    float complex zf, zccosf;
    zf = 1.0f + 2.0f * I;
    zccosf = ccosf(zf);

    long double complex zL, zccosl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zccosl = ccosl(zL);

    double zimag = cimag(zccos);
    float zimagf = cimagf(zccosf);
    long double zimagl = cimagl(zccosl);
    if (zimag < 0) 
        printf("The cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccos), fabs(zimag));
    else 
        printf("The cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccos), zimag);       

    if (zimagf < 0) 
        printf("The cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), fabsf(zimagf));
    else 
        printf("The cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), zimagf);

    if (zimagl < 0) 
        printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), fabsl(zimagl));
    else 
        printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), zimagl);
    return 0;
}

11.3 运行结果

在这里插入图片描述

12. ccosh,ccoshf,ccoshl

12.1 函数说明

函数声明 函数功能
double complex ccosh (double complex z); 计算复数z的双曲余弦(double complex)
float complex ccoshf (float complex z); 计算复数z的双曲余弦(float complex)
long double complex ccoshl (long double complex z); 计算复数z的双曲余弦(long double complex)

12.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zccosh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zccosh = ccosh(z); // 双曲余弦

    float complex zf, zccoshf;
    zf = 1.0f + 2.0f * I;
    zccoshf = ccoshf(zf);

    long double complex zL, zccoshl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zccoshl = ccoshl(zL);

    double zimag = cimag(zccosh);
    float zimagf = cimagf(zccoshf);
    long double zimagl = cimagl(zccoshl);
    if (zimag < 0) 
        printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccosh), fabs(zimag));
    else 
        printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccosh), zimag);       

    if (zimagf < 0) 
        printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), fabsf(zimagf));
    else 
        printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), zimagf);

    if (zimagl < 0) 
        printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), fabsl(zimagl));
    else 
        printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), zimagl);
    return 0;
}

12.3 运行结果

在这里插入图片描述

13. csin,csinf,csinl

13.1 函数说明

函数声明 函数功能
double complex csin (double complex z); 计算复数z的正弦(double complex)
float complex csinf (float complex z); 计算复数z的正弦(float complex)
long double complex csinl (long double complex z); 计算复数z的正弦(long double complex)

13.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcsin;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcsin = csin(z); // 正弦

    float complex zf, zcsinf;
    zf = 1.0f + 2.0f * I;
    zcsinf = csinf(zf);

    long double complex zL, zcsinl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcsinl = csinl(zL);

    double zimag = cimag(zcsin);
    float zimagf = cimagf(zcsinf);
    long double zimagl = cimagl(zcsinl);
    if (zimag < 0) 
        printf("The sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsin), fabs(zimag));
    else 
        printf("The sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsin), zimag);       

    if (zimagf < 0) 
        printf("The sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), fabsf(zimagf));
    else 
        printf("The sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), zimagf);

    if (zimagl < 0) 
        printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), fabsl(zimagl));
    else 
        printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), zimagl);
    return 0;
}

13.3 运行结果

在这里插入图片描述

14. csinh,csinhf,csinhl

14.1 函数说明

函数声明 函数功能
double complex csinh (double complex z); 计算复数z的双曲正弦(double complex)
float complex csinhf (float complex z); 计算复数z的双曲正弦(float complex)
long double complex csinhl (long double complex z); 计算复数z的双曲正弦(long double complex)

14.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcsinh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcsinh = csinh(z); // 双曲正弦

    float complex zf, zcsinhf;
    zf = 1.0f + 2.0f * I;
    zcsinhf = csinhf(zf);

    long double complex zL, zcsinhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcsinhl = csinhl(zL);

    double zimag = cimag(zcsinh);
    float zimagf = cimagf(zcsinhf);
    long double zimagl = cimagl(zcsinhl);
    if (zimag < 0) 
        printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), fabs(zimag));
    else 
        printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), zimag);       

    if (zimagf < 0) 
        printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), fabsf(zimagf));
    else 
        printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), zimagf);

    if (zimagl < 0) 
        printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), fabsl(zimagl));
    else 
        printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), zimagl);
    return 0;
}

14.3 运行结果

在这里插入图片描述

15. ctan,ctanf,ctanl

15.1 函数说明

函数声明 函数功能
double complex ctan (double complex z); 计算复数z的正切(double complex)
float complex ctanf (float complex z); 计算复数z的正切(float complex)
long double complex ctanl (long double complex z); 计算复数z的正切(long double complex)

15.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zctan;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zctan = ctan(z); // 正切

    float complex zf, zctanf;
    zf = 1.0f + 2.0f * I;
    zctanf = ctanf(zf);

    long double complex zL, zctanl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zctanl = ctanl(zL);

    double zimag = cimag(zctan);
    float zimagf = cimagf(zctanf);
    long double zimagl = cimagl(zctanl);
    if (zimag < 0) 
        printf("The tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctan), fabs(zimag));
    else 
        printf("The tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctan), zimag);       

    if (zimagf < 0) 
        printf("The tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), fabsf(zimagf));
    else 
        printf("The tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), zimagf);

    if (zimagl < 0) 
        printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), fabsl(zimagl));
    else 
        printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), zimagl);
    return 0;
}

15.3 运行结果

在这里插入图片描述

16. ctanh,ctanhf,ctanhl

16.1 函数说明

函数声明 函数功能
double complex ctanh (double complex z); 计算复数z的双曲正切(double complex)
float complex ctanhf (float complex z); 计算复数z的双曲正切(float complex)
long double complex ctanhl (long double complex z); 计算复数z的双曲正切(long double complex)

16.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zctanh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zctanh = ctanh(z); // 双曲正切

    float complex zf, zctanhf;
    zf = 1.0f + 2.0f * I;
    zctanhf = ctanhf(zf);

    long double complex zL, zctanhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zctanhl = ctanhl(zL);

    double zimag = cimag(zctanh);
    float zimagf = cimagf(zctanhf);
    long double zimagl = cimagl(zctanhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctanh), fabs(zimag));
    else 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctanh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), zimagl);
    return 0;
}

16.3 运行结果

在这里插入图片描述

17. cexp,cexpf,cexpl

17.1 函数说明

函数声明 函数功能
double complex cexp (double complex z); 计算复数z的指数基数e(double complex)
float complex cexpf (float complex z); 计算复数z的指数基数e(float complex)
long double complex cexpl (long double complex z); 计算复数z的指数基数e(long double complex)

17.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcexp;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcexp = cexp(z); // 指数基数e

    float complex zf, zcexpf;
    zf = 1.0f + 2.0f * I;
    zcexpf = cexpf(zf);

    long double complex zL, zcexpl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcexpl = cexpl(zL);

    double zimag = cimag(zcexp);
    float zimagf = cimagf(zcexpf);
    long double zimagl = cimagl(zcexpl);
    if (zimag < 0) 
        printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcexp), fabs(zimag));
    else 
        printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcexp), zimag);       

    if (zimagf < 0) 
        printf("The base-e exponential of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), fabsf(zimagf));
    else 
        printf("The base-e exponential of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), zimagf);

    if (zimagl < 0) 
        printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), fabsl(zimagl));
    else 
        printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), zimagl);
    return 0;
}

17.3 运行结果

在这里插入图片描述

18. clog,clogf,clogl

18.1 函数说明

函数声明 函数功能
double complex clog (double complex z); 计算复数z的自然对数(以e为底)(double complex)
float complex clogf (float complex z); 计算复数z的自然对数(以e为底)(float complex)
long double complex clogl (long double complex z); 计算复数z的自然对数(以e为底)(long double complex)

18.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zclog;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zclog = clog(z); // 自然对数(以e为底)

    float complex zf, zclogf;
    zf = 1.0f + 2.0f * I;
    zclogf = clogf(zf);

    long double complex zL, zclogl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zclogl = clogl(zL);

    double zimag = cimag(zclog);
    float zimagf = cimagf(zclogf);
    long double zimagl = cimagl(zclogl);
    if (zimag < 0) 
        printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zclog), fabs(zimag));
    else 
        printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zclog), zimag);       

    if (zimagf < 0) 
        printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), fabsf(zimagf));
    else 
        printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), zimagf);

    if (zimagl < 0) 
        printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), fabsl(zimagl));
    else 
        printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), zimagl);
    return 0;
}

18.3 运行结果

在这里插入图片描述

19. conj,conjf,conjl

19.1 函数说明

函数声明 函数功能
double complex conj (double complex z); 计算复数z的共轭(double complex)
float complex conjf (float complex z); 计算复数z的共轭(float complex)
long double complex conjl (long double complex z); 计算复数z的共轭(long double complex)

19.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zconj;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zconj = conj(z); // 共轭

    float complex zf, zconjf;
    zf = 1.0f + 2.0f * I;
    zconjf = conjf(zf);

    long double complex zL, zconjl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zconjl = conjl(zL);

    double zimag = cimag(zconj);
    float zimagf = cimagf(zconjf);
    long double zimagl = cimagl(zconjl);
    if (zimag < 0) 
        printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf - %.4lfi)\n", creal(z), cimag(z), creal(zconj), fabs(zimag));
    else 
        printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf + %.4lfi)\n", creal(z), cimag(z), creal(zconj), zimag);       

    if (zimagf < 0) 
        printf("The conjugate of (%.4f + %.4fi) is (%.4f - %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), fabsf(zimagf));
    else 
        printf("The conjugate of (%.4f + %.4fi) is (%.4f + %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), zimagf);

    if (zimagl < 0) 
        printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf - %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), fabsl(zimagl));
    else 
        printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf + %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), zimagl);
    return 0;
}

19.3 运行结果

在这里插入图片描述

20. cpow,cpowf,cpowl

20.1 函数说明

函数声明 函数功能
double complex cpow (double complex x, double complex y); 计算x的y次方值 (double complex)
float complex cpowf (float complex x, float complex y); 计算x的y次方值 (float complex)
long double complex cpowl (long double complex x, long double complex y); 计算x的y次方值 (double complex)

20.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex x, y, z;
    x = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    y = 2.0 + 1.0 * I; 
    z = cpow(x, y); // x的y次方值

    float complex xf, yf, zf;
    xf = 1.0f + 2.0f * I;
    yf = 2.0f + 1.0f * I; 
    zf = cpowf(xf, yf);

    long double complex xL, yL, zL;
    xL = (long double) 1.0 + (long double) 2.0 * I;
    yL = (long double) 2.0 + (long double) 1.0 * I;
    zL = cpowl(xL, yL);

    double zimag = cimag(z);
    float zimagf = cimagf(zf);
    long double zimagl = cimagl(zL);
    if (zimag < 0) 
        printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf - %.20lfi)\n", 
            creal(x), cimag(x), creal(y), cimag(y), creal(z), fabs(zimag));
    else 
        printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf + %.20lfi)\n", 
            creal(x), cimag(x), creal(y), cimag(y), creal(z), zimag);       

    if (zimagf < 0) 
        printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f - %.20fi)\n", 
            crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), fabs(zimagf));
    else 
        printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f + %.20fi)\n", 
            crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), zimagf);
    if (zimagl < 0) 
        printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf - %.20Lfi)\n", 
            creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), fabs(zimagl));
    else 
        printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf + %.20Lfi)\n", 
            creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), zimagl);    
    return 0;
}

20.3 运行结果

在这里插入图片描述

21. cproj,cprojf,cprojl

21.1 函数说明

函数声明 函数功能
double complex cproj (double complex z); 计算复数z在黎曼球面上的投影(double complex)
float complex cprojf (float complex z); 计算复数z在黎曼球面上的投影(float complex)
long double complex cprojl (long double complex z); 计算复数z在黎曼球面上的投影(long double complex)

21.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcproj;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcproj = cproj(z); // 计算复数z在黎曼球面上的投影

    float complex zf, zcprojf;
    zf = NAN + INFINITY * I;
    zcprojf = cprojf(zf);

    long double complex zL, zcprojl;
    zL = INFINITY + (long double) 3.0 * I; 
    zcprojl = cprojl(zL); // 结果相当于  INFINITY + i*copysign(0.0, cimag(z)).

    double zimag = cimag(zcproj);
    float zimagf = cimagf(zcprojf);
    long double zimagl = cimagl(zcprojl);
    if (zimag < 0) 
        printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf - %.4lf i)\n", creal(z), cimag(z), creal(zcproj), fabs(zimag));
    else 
        printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf + %.4lf i)\n", creal(z), cimag(z), creal(zcproj), zimag);       

    if (zimagf < 0) 
        printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f - %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), fabsf(zimagf));
    else 
        printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f + %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), zimagf);

    if (zimagl < 0) 
        printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf - %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), fabsl(zimagl));
    else 
        printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf + %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), zimagl);
    return 0;
}

21.3 运行结果

在这里插入图片描述

22. csqrt,csqrtf,csqrtl

22.1 函数说明

函数声明 函数功能
double complex csqrt (double complex z); 计算复数z的平方根(double complex)
float complex csqrtf (float complex z); 计算复数z的平方根(float complex)
long double complex csqrtl (long double complex z); 计算复数z的平方根(long double complex)

22.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
    double complex z, zcsqrt;
    z = 9.0 + 9.0 * I; // I 代指 虚数单位 i
    zcsqrt = csqrt(z); // 平方根

    float complex zf, zcsqrtf;
    zf = 4.0f + 4.0f * I;
    zcsqrtf = csqrtf(zf);

    long double complex zL, zcsqrtl;
    zL = (long double) 16.0 + (long double) 16.0 * I;
    zcsqrtl = csqrtl(zL);

    double zimag = cimag(zcsqrt);
    float zimagf = cimagf(zcsqrtf);
    long double zimagl = cimagl(zcsqrtl);
    if (zimag < 0) 
        printf("The square root of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), fabs(zimag));
    else 
        printf("The square root of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), zimag);       

    if (zimagf < 0) 
        printf("The square root of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), fabsf(zimagf));
    else 
        printf("The square root of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), zimagf);

    if (zimagl < 0) 
        printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), fabsl(zimagl));
    else 
        printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), zimagl);
    return 0;
}

22.3 运行结果

在这里插入图片描述

参考

  1. 【MATH-标准C库】

标签:zL,%.,函数,--,double,zf,long,C语言,complex
From: https://blog.51cto.com/huazie/6142209

相关文章

  • npm的常见问题及配置
    运行npminstall遇到问题:Nomatchingversionfoundforts-transformer-properties-rename@~0.14.0运行 npmsearchts-transformer-properties-rename也报错404应......
  • Python——面向对象编程(十一)
    1.对象的封装#coding=utf-8#对象的封装#类的概念"""类的名字:当名字由多个单词构成时,我们采用驼峰命名法就是说多个单词,每个单词的首字母需要大写这也是python的......
  • JavaScript 浏览器打断点 Debugging
      1.下面我们看一个例子,这里是5+1=6,但是结果是51   console.log效率会比较低  2.debug可以暂停代码,和查看变量,按F12,看Sources  3.展开鼠标类型,......
  • Java Spring使用EventSource进行服务端推送
    Java代码:@ResponseBody@RequestMapping(value="/getDate",produces="text/event-stream;charset=UTF-8")publicvoidgetDate(HttpServletResponse......
  • Pycharm查看类或函数的使用和调用
    一、类或函数的使用当我们看到一个类或函数的时候,一定想知道它的作用是什么,它的输入参数有哪些,输出是什么。下面提供几种方法:(1)鼠标直接指在类或函数上,右键->GoTo->Declara......
  • vue-element-template改为从后台获取菜单
    一、后端接口获取菜单信息1、返回数据样式{ "code":20000, "data":[{ "menuId":"2000000000000001", "parentMenuId":"0", "name":"Json工具", "menuType......
  • 一统天下 flutter - dart: 库的开发和使用
    一统天下flutterhttps://github.com/webabcd/flutter_demo作者webabcd一统天下flutter-dart:库的开发和使用示例如下:lib\dart\package\demo.dart/**dart......
  • 你学会什么是布隆过滤器了吗?
    导读在对响应时间要求比较严格的情况下,如果我们有里面,那么随着集合中元素数量的增加,我们需要的存储空间越来越大,检索时间也越来越长,导致内存过多开销和时间效率变低。......
  • IDEA集成Gitee
    配置Git在设置里面点击Git,点击选择git安装目录下的bin目录下的git.exe,点击Test,出现版本号,证明配置成功。配置码云在设置里面按照下图步骤,即可成功配置码云安装Git......
  • 测试工程师的工作
    theme:channing-cyan测试这份工作确实入门相对来说是比较低的,看起来谁都能做,但是不一定谁都能做好,并且在一些小公司里面,测试往往还会被其他人认为是没有技术含量的工作,......