首页 > 其他分享 >商品占比

商品占比

时间:2023-03-20 16:22:32浏览次数:31  
标签:sort index plt 商品 link csv data

# -*- coding: utf-8 -*-

# 代码8-1 查看数据特征

import numpy as np
import pandas as pd

inputfile ="D:\GoodsOrder.csv" # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk') # 读取数据
data .info() # 查看数据属性

data = data['id']
description = [data.count(),data.min(), data.max()] # 依次计算总数、最小值、最大值
description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T # 将结果存入数据框
print('描述性统计结果:\n',np.round(description)) # 输出结果

 

# 代码8-2 分析热销商品

# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = "D:\GoodsOrder.csv" # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk') # 读取数据
group = data.groupby(['Goods']).count().reset_index() # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量:\n', sorted[:10]) # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize = (8, 4)) # 设置画布大小
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量') # 设置x轴标题
plt.ylabel('商品类别') # 设置y轴标题
plt.title('2020310143011商品的销量TOP10') # 设置标题
plt.savefig("E:\Figure 2023-03-15 103822.png") # 把图片以.png格式保存
plt.show() # 展示图片

# 销量排行前10商品的销量占比
data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
print(row['Goods'],row['id'],row['id']/data_nums)




# 代码8-3 各类别商品的销量及其占比

import pandas as pd
inputfile1 ="D:\GoodsOrder.csv"
inputfile2 ="D:\GoodsTypes.csv"
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk') # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0] # 总量
del sort['index']

sort_links = pd.merge(sort,types) # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index'] # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 ="E:/789.csv"
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk') # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6)) # 设置画布大小
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('2020310143011每类商品销量占比') # 设置标题
plt.savefig("E:/4789.png") # 把图片以.png格式保存
plt.show()

 

# 代码8-4 非酒精饮料内部商品的销量及其占比

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料'] # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum() # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1) # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = "E:/369.csv"
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk') # 输出结果

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6)) # 设置画布大小
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3) # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("2020310143011非酒精饮料内部各商品的销量占比") # 设置标题
plt.axis('equal')
plt.savefig("E:/5478.png") # 保存图形
plt.show() # 展示图形

 

 

 

 

 

 

标签:sort,index,plt,商品,link,csv,data
From: https://www.cnblogs.com/jiujiuwawa/p/17236746.html

相关文章

  • 移动加权商品,成本计算相关(6.5之前版本适用)
    6.5之前版本适用移动加权商品,如果发现成本不对,请先进行成本计算。成本计算的注意事项:1、成本计算的过程中不要开单2、服务器内存使用情况不要超过90%,因为计算的过程中......
  • 第八章---商品零售购物篮分析
    1.数据探索--查看数据特征importnumpyasnpimportpandasaspdinputfile='./GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gb......
  • 数据分析-商品零售购物篮关联规则模型
    查看数据特征importnumpyasnpimportpandasaspdinputfile='D:/人工智能&软件工程/数据挖掘与分析/data/GoodsOrder.csv'#输入的数据文件data=pd.read_......
  • 商品零售购物篮分析
    #代码8-1查看数据特征importnumpyasnpimportpandasaspdinputfile='./data/GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gbk'......
  • 商品零售购物篮分析
     #代码8-1查看数据特征importnumpyasnpimportpandasaspdinputfile='../data/GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encodi......
  • 商品零售购物篮分析
    #查看数据特征importnumpyasnpimportpandasaspdinputfile='./data/GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gbk')......
  • 第四周——商品数据分析
    importpandasaspdinputfile1=r"D:\Weixin\WeChatFiles\wxid_cg9y4qd0yxhb22\FileStorage\File\2023-03\GoodsOrder.csv"inputfile2=r"D:\Weixin\WeChatFiles\w......
  • 商品的零售购物篮分析
    %matplotlibinlineimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#设置字体plt.rcParams["font.sans-serif"]=["SimHei"]plt.rcPara......
  • 商品的零售购物篮分析
    importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif"]=["SimHei"]plt.rcParams["axes.unicode_minus"]=Fals......
  • 商品的零售购物篮分析
    importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif"]=["SimHei"]plt.rcParams["axes.unicode_minus"]=Fals......