首页 > 其他分享 >多线程初级

多线程初级

时间:2023-03-15 20:25:06浏览次数:36  
标签:Thread 汉堡包 void 初级 线程 new 多线程 public

多线程

1.4实现多线程方式一:继承Thread类【应用】

  • 方法介绍

    方法名 说明
    void run() 在线程开启后,此方法将被调用执行
    void start() 使此线程开始执行,Java虚拟机会调用run方法()
  • 实现步骤

    • 定义一个类MyThread继承Thread类
    • 在MyThread类中重写run()方法
    • 创建MyThread类的对象
    • 启动线程
  • 代码演示

    public class MyThread extends Thread {
        @Override
        public void run() {
            for(int i=0; i<100; i++) {
                System.out.println(i);
            }
        }
    }
    public class MyThreadDemo {
        public static void main(String[] args) {
            MyThread my1 = new MyThread();
            MyThread my2 = new MyThread();
    
    //        my1.run();
    //        my2.run();
    
            //void start() 导致此线程开始执行; Java虚拟机调用此线程的run方法
            my1.start();
            my2.start();
        }
    }
    
  • 两个小问题

    • 为什么要重写run()方法?

      因为run()是用来封装被线程执行的代码

    • run()方法和start()方法的区别?

      run():封装线程执行的代码,直接调用,相当于普通方法的调用

      start():启动线程;然后由JVM调用此线程的run()方法

1.5实现多线程方式二:实现Runnable接口【应用】

  • Thread构造方法

    方法名 说明
    Thread(Runnable target) 分配一个新的Thread对象
    Thread(Runnable target, String name) 分配一个新的Thread对象
  • 实现步骤

    • 定义一个类MyRunnable实现Runnable接口
    • 在MyRunnable类中重写run()方法
    • 创建MyRunnable类的对象
    • 创建Thread类的对象,把MyRunnable对象作为构造方法的参数
    • 启动线程
  • 代码演示

    public class MyRunnable implements Runnable {
        @Override
        public void run() {
            for(int i=0; i<100; i++) {
                System.out.println(Thread.currentThread().getName()+":"+i);
            }
        }
    }
    public class MyRunnableDemo {
        public static void main(String[] args) {
            //创建MyRunnable类的对象
            MyRunnable my = new MyRunnable();
    
            //创建Thread类的对象,把MyRunnable对象作为构造方法的参数
            //Thread(Runnable target)
    //        Thread t1 = new Thread(my);
    //        Thread t2 = new Thread(my);
            //Thread(Runnable target, String name)
            Thread t1 = new Thread(my,"坦克");
            Thread t2 = new Thread(my,"飞机");
    
            //启动线程
            t1.start();
            t2.start();
        }
    }
    

1.6实现多线程方式三: 实现Callable接口【应用】

  • 方法介绍

    方法名 说明
    V call() 计算结果,如果无法计算结果,则抛出一个异常
    FutureTask(Callable callable) 创建一个 FutureTask,一旦运行就执行给定的 Callable
    V get() 如有必要,等待计算完成,然后获取其结果
  • 实现步骤

    • 定义一个类MyCallable实现Callable接口
    • 在MyCallable类中重写call()方法
    • 创建MyCallable类的对象
    • 创建Future的实现类FutureTask对象,把MyCallable对象作为构造方法的参数
    • 创建Thread类的对象,把FutureTask对象作为构造方法的参数
    • 启动线程
    • 再调用get方法,就可以获取线程结束之后的结果。
  • 代码演示

    public class MyCallable implements Callable<String> {
        @Override
        public String call() throws Exception {
            for (int i = 0; i < 100; i++) {
                System.out.println("跟女孩表白" + i);
            }
            //返回值就表示线程运行完毕之后的结果
            return "答应";
        }
    }
    public class Demo {
        public static void main(String[] args) throws ExecutionException, InterruptedException {
            //线程开启之后需要执行里面的call方法
            MyCallable mc = new MyCallable();
    
            //Thread t1 = new Thread(mc);
    
            //可以获取线程执行完毕之后的结果.也可以作为参数传递给Thread对象
            FutureTask<String> ft = new FutureTask<>(mc);
    
            //创建线程对象
            Thread t1 = new Thread(ft);
    
            String s = ft.get();
            //开启线程
            t1.start();
    
            //String s = ft.get();
            System.out.println(s);
        }
    }
    
  • 三种实现方式的对比

    • 实现Runnable、Callable接口
      • 好处: 扩展性强,实现该接口的同时还可以继承其他的类
      • 缺点: 编程相对复杂,不能直接使用Thread类中的方法
    • 继承Thread类
      • 好处: 编程比较简单,可以直接使用Thread类中的方法
      • 缺点: 可以扩展性较差,不能再继承其他的类

1.7设置和获取线程名称【应用】

  • 方法介绍

    方法名 说明
    void setName(String name) 将此线程的名称更改为等于参数name
    String getName() 返回此线程的名称
    Thread currentThread() 返回对当前正在执行的线程对象的引用
  • 代码演示

    public class MyThread extends Thread {
        public MyThread() {}
        public MyThread(String name) {
            super(name);
        }
    
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                System.out.println(getName()+":"+i);
            }
        }
    }
    public class MyThreadDemo {
        public static void main(String[] args) {
            MyThread my1 = new MyThread();
            MyThread my2 = new MyThread();
    
            //void setName(String name):将此线程的名称更改为等于参数 name
            my1.setName("高铁");
            my2.setName("飞机");
    
            //Thread(String name)
            MyThread my1 = new MyThread("高铁");
            MyThread my2 = new MyThread("飞机");
    
            my1.start();
            my2.start();
    
            //static Thread currentThread() 返回对当前正在执行的线程对象的引用
            System.out.println(Thread.currentThread().getName());
        }
    }
    

1.8线程休眠【应用】

  • 相关方法

    方法名 说明
    static void sleep(long millis) 使当前正在执行的线程停留(暂停执行)指定的毫秒数
  • 代码演示

    public class MyRunnable implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
    
                System.out.println(Thread.currentThread().getName() + "---" + i);
            }
        }
    }
    public class Demo {
        public static void main(String[] args) throws InterruptedException {
            /*System.out.println("睡觉前");
            Thread.sleep(3000);
            System.out.println("睡醒了");*/
    
            MyRunnable mr = new MyRunnable();
    
            Thread t1 = new Thread(mr);
            Thread t2 = new Thread(mr);
    
            t1.start();
            t2.start();
        }
    }
    

1.9线程优先级【应用】

  • 优先级相关方法

    方法名 说明
    final int getPriority() 返回此线程的优先级
    final void setPriority(int newPriority) 更改此线程的优先级线程默认优先级是5;线程优先级的范围是:1-10
  • 代码演示

    public class MyCallable implements Callable<String> {
        @Override
        public String call() throws Exception {
            for (int i = 0; i < 100; i++) {
                System.out.println(Thread.currentThread().getName() + "---" + i);
            }
            return "线程执行完毕了";
        }
    }
    public class Demo {
        public static void main(String[] args) {
            //优先级: 1 - 10 默认值:5
            MyCallable mc = new MyCallable();
    
            FutureTask<String> ft = new FutureTask<>(mc);
    
            Thread t1 = new Thread(ft);
            t1.setName("飞机");
            t1.setPriority(10);
            //System.out.println(t1.getPriority());//5
            t1.start();
    
            MyCallable mc2 = new MyCallable();
    
            FutureTask<String> ft2 = new FutureTask<>(mc2);
    
            Thread t2 = new Thread(ft2);
            t2.setName("坦克");
            t2.setPriority(1);
            //System.out.println(t2.getPriority());//5
            t2.start();
        }
    }
    

1.10守护线程【应用】

  • 相关方法

    方法名 说明
    void setDaemon(boolean on) 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机将退出
  • 代码演示

    public class MyThread1 extends Thread {
        @Override
        public void run() {
            for (int i = 0; i < 10; i++) {
                System.out.println(getName() + "---" + i);
            }
        }
    }
    public class MyThread2 extends Thread {
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                System.out.println(getName() + "---" + i);
            }
        }
    }
    public class Demo {
        public static void main(String[] args) {
            MyThread1 t1 = new MyThread1();
            MyThread2 t2 = new MyThread2();
    
            t1.setName("女神");
            t2.setName("备胎");
    
            //把第二个线程设置为守护线程
            //当普通线程执行完之后,那么守护线程也没有继续运行下去的必要了.
            t2.setDaemon(true);
    
            t1.start();
            t2.start();
        }
    }
    

2.线程同步

2.1卖票【应用】

  • 案例需求

    某电影院目前正在上映国产大片,共有100张票,而它有3个窗口卖票,请设计一个程序模拟该电影院卖票

  • 实现步骤

    • 定义一个类SellTicket实现Runnable接口,里面定义一个成员变量:private int tickets = 100;

    • 在SellTicket类中重写run()方法实现卖票,代码步骤如下

    • 判断票数大于0,就卖票,并告知是哪个窗口卖的

    • 卖了票之后,总票数要减1

    • 票卖没了,线程停止

    • 定义一个测试类SellTicketDemo,里面有main方法,代码步骤如下

    • 创建SellTicket类的对象

    • 创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称

    • 启动线程

  • 代码实现

    public class SellTicket implements Runnable {
        private int tickets = 100;
        //在SellTicket类中重写run()方法实现卖票,代码步骤如下
        @Override
        public void run() {
            while (true) {
                if(ticket <= 0){
                        //卖完了
                        break;
                    }else{
                        try {
                            Thread.sleep(100);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        ticket--;
                        System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票");
                    }
            }
        }
    }
    public class SellTicketDemo {
        public static void main(String[] args) {
            //创建SellTicket类的对象
            SellTicket st = new SellTicket();
    
            //创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称
            Thread t1 = new Thread(st,"窗口1");
            Thread t2 = new Thread(st,"窗口2");
            Thread t3 = new Thread(st,"窗口3");
    
            //启动线程
            t1.start();
            t2.start();
            t3.start();
        }
    }
    

2.2卖票案例的问题【理解】

  • 卖票出现了问题

    • 相同的票出现了多次

    • 出现了负数的票

  • 问题产生原因

    线程执行的随机性导致的,可能在卖票过程中丢失cpu的执行权,导致出现问题

2.3同步代码块解决数据安全问题【应用】

  • 安全问题出现的条件

    • 是多线程环境

    • 有共享数据

    • 有多条语句操作共享数据

  • 如何解决多线程安全问题呢?

    • 基本思想:让程序没有安全问题的环境
  • 怎么实现呢?

    • 把多条语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可

    • Java提供了同步代码块的方式来解决

  • 同步代码块格式:

    synchronized(任意对象) { 
    	多条语句操作共享数据的代码 
    }
    

    synchronized(任意对象):就相当于给代码加锁了,任意对象就可以看成是一把锁

  • 同步的好处和弊端

    • 好处:解决了多线程的数据安全问题

    • 弊端:当线程很多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率

  • 代码演示

    public class SellTicket implements Runnable {
        private int tickets = 100;
        private Object obj = new Object();
    
        @Override
        public void run() {
            while (true) {
                synchronized (obj) { // 对可能有安全问题的代码加锁,多个线程必须使用同一把锁
                    //t1进来后,就会把这段代码给锁起来
                    if (tickets > 0) {
                        try {
                            Thread.sleep(100);
                            //t1休息100毫秒
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        //窗口1正在出售第100张票
                        System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");
                        tickets--; //tickets = 99;
                    }
                }
                //t1出来了,这段代码的锁就被释放了
            }
        }
    }
    
    public class SellTicketDemo {
        public static void main(String[] args) {
            SellTicket st = new SellTicket();
    
            Thread t1 = new Thread(st, "窗口1");
            Thread t2 = new Thread(st, "窗口2");
            Thread t3 = new Thread(st, "窗口3");
    
            t1.start();
            t2.start();
            t3.start();
        }
    }
    

2.4同步方法解决数据安全问题【应用】

  • 同步方法的格式

    同步方法:就是把synchronized关键字加到方法上

    修饰符 synchronized 返回值类型 方法名(方法参数) { 
    	方法体;
    }
    

    同步方法的锁对象是什么呢?

    ​ this

  • 静态同步方法

    同步静态方法:就是把synchronized关键字加到静态方法上

    修饰符 static synchronized 返回值类型 方法名(方法参数) { 
    	方法体;
    }
    

    同步静态方法的锁对象是什么呢?

    ​ 类名.class

  • 代码演示

    public class MyRunnable implements Runnable {
        private static int ticketCount = 100;
    
        @Override
        public void run() {
            while(true){
                if("窗口一".equals(Thread.currentThread().getName())){
                    //同步方法
                    boolean result = synchronizedMthod();
                    if(result){
                        break;
                    }
                }
    
                if("窗口二".equals(Thread.currentThread().getName())){
                    //同步代码块
                    synchronized (MyRunnable.class){
                        if(ticketCount == 0){
                           break;
                        }else{
                            try {
                                Thread.sleep(10);
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                            ticketCount--;
                            System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票");
                        }
                    }
                }
    
            }
        }
    
        private static synchronized boolean synchronizedMthod() {
            if(ticketCount == 0){
                return true;
            }else{
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                ticketCount--;
                System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票");
                return false;
            }
        }
    }
    

    public class Demo {
    public static void main(String[] args) {
    MyRunnable mr = new MyRunnable();

        Thread t1 = new Thread(mr);
        Thread t2 = new Thread(mr);
    
        t1.setName("窗口一");
        t2.setName("窗口二");
    
        t1.start();
        t2.start();
    }
    

    }

2.5Lock锁【应用】

虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock

Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化

  • ReentrantLock构造方法

    方法名 说明
    ReentrantLock() 创建一个ReentrantLock的实例
  • 加锁解锁方法

    方法名 说明
    void lock() 获得锁
    void unlock() 释放锁
  • 代码演示

    public class Ticket implements Runnable {
        //票的数量
        private int ticket = 100;
        private Object obj = new Object();
        private ReentrantLock lock = new ReentrantLock();
    
        @Override
        public void run() {
            while (true) {
                //synchronized (obj){//多个线程必须使用同一把锁.
                try {
                    lock.lock();
                    if (ticket <= 0) {
                        //卖完了
                        break;
                    } else {
                        Thread.sleep(100);
                        ticket--;
                        System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票");
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
                // }
            }
        }
    }
    
    public class Demo {
        public static void main(String[] args) {
            Ticket ticket = new Ticket();
    
            Thread t1 = new Thread(ticket);
            Thread t2 = new Thread(ticket);
            Thread t3 = new Thread(ticket);
    
            t1.setName("窗口一");
            t2.setName("窗口二");
            t3.setName("窗口三");
    
            t1.start();
            t2.start();
            t3.start();
        }
    }
    

2.6死锁【理解】

  • 概述

    线程死锁是指由于两个或者多个线程互相持有对方所需要的资源,导致这些线程处于等待状态,无法前往执行

  • 什么情况下会产生死锁

    1. 资源有限
    2. 同步嵌套
  • 代码演示

    public class Demo {
        public static void main(String[] args) {
            Object objA = new Object();
            Object objB = new Object();
    
            new Thread(()->{
                while(true){
                    synchronized (objA){
                        //线程一
                        synchronized (objB){
                            System.out.println("小康同学正在走路");
                        }
                    }
                }
            }).start();
    
            new Thread(()->{
                while(true){
                    synchronized (objB){
                        //线程二
                        synchronized (objA){
                            System.out.println("小薇同学正在走路");
                        }
                    }
                }
            }).start();
        }
    }
    

3.生产者消费者

3.1生产者和消费者模式概述【应用】

  • 概述

    生产者消费者模式是一个十分经典的多线程协作的模式,弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。

    所谓生产者消费者问题,实际上主要是包含了两类线程:

    ​ 一类是生产者线程用于生产数据

    ​ 一类是消费者线程用于消费数据

    为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库

    生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为

    消费者只需要从共享数据区中去获取数据,并不需要关心生产者的行为

  • Object类的等待和唤醒方法

    方法名 说明
    void wait() 导致当前线程等待,直到另一个线程调用该对象的 notify()方法或 notifyAll()方法
    void notify() 唤醒正在等待对象监视器的单个线程
    void notifyAll() 唤醒正在等待对象监视器的所有线程

3.2生产者和消费者案例【应用】

  • 案例需求

    • 桌子类(Desk):定义表示包子数量的变量,定义锁对象变量,定义标记桌子上有无包子的变量

    • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务

      1.判断是否有包子,决定当前线程是否执行

      2.如果有包子,就进入等待状态,如果没有包子,继续执行,生产包子

      3.生产包子之后,更新桌子上包子状态,唤醒消费者消费包子

    • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务

      1.判断是否有包子,决定当前线程是否执行

      2.如果没有包子,就进入等待状态,如果有包子,就消费包子

      3.消费包子后,更新桌子上包子状态,唤醒生产者生产包子

    • 测试类(Demo):里面有main方法,main方法中的代码步骤如下

      创建生产者线程和消费者线程对象

      分别开启两个线程

  • 代码实现

    public class Desk {
    
        //定义一个标记
        //true 就表示桌子上有汉堡包的,此时允许吃货执行
        //false 就表示桌子上没有汉堡包的,此时允许厨师执行
        public static boolean flag = false;
    
        //汉堡包的总数量
        public static int count = 10;
    
        //锁对象
        public static final Object lock = new Object();
    }
    
    public class Cooker extends Thread {
    //    生产者步骤:
    //            1,判断桌子上是否有汉堡包
    //    如果有就等待,如果没有才生产。
    //            2,把汉堡包放在桌子上。
    //            3,叫醒等待的消费者开吃。
        @Override
        public void run() {
            while(true){
                synchronized (Desk.lock){
                    if(Desk.count == 0){
                        break;
                    }else{
                        if(!Desk.flag){
                            //生产
                            System.out.println("厨师正在生产汉堡包");
                            Desk.flag = true;
                            Desk.lock.notifyAll();
                        }else{
                            try {
                                Desk.lock.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
        }
    }
    
    public class Foodie extends Thread {
        @Override
        public void run() {
    //        1,判断桌子上是否有汉堡包。
    //        2,如果没有就等待。
    //        3,如果有就开吃
    //        4,吃完之后,桌子上的汉堡包就没有了
    //                叫醒等待的生产者继续生产
    //        汉堡包的总数量减一
    
            //套路:
                //1. while(true)死循环
                //2. synchronized 锁,锁对象要唯一
                //3. 判断,共享数据是否结束. 结束
                //4. 判断,共享数据是否结束. 没有结束
            while(true){
                synchronized (Desk.lock){
                    if(Desk.count == 0){
                        break;
                    }else{
                        if(Desk.flag){
                            //有
                            System.out.println("吃货在吃汉堡包");
                            Desk.flag = false;
                            Desk.lock.notifyAll();
                            Desk.count--;
                        }else{
                            //没有就等待
                            //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                            try {
                                Desk.lock.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
    
        }
    }
    
    public class Demo {
        public static void main(String[] args) {
            /*消费者步骤:
            1,判断桌子上是否有汉堡包。
            2,如果没有就等待。
            3,如果有就开吃
            4,吃完之后,桌子上的汉堡包就没有了
                    叫醒等待的生产者继续生产
            汉堡包的总数量减一*/
    
            /*生产者步骤:
            1,判断桌子上是否有汉堡包
            如果有就等待,如果没有才生产。
            2,把汉堡包放在桌子上。
            3,叫醒等待的消费者开吃。*/
    
            Foodie f = new Foodie();
            Cooker c = new Cooker();
    
            f.start();
            c.start();
    
        }
    }
    

3.3生产者和消费者案例优化【应用】

  • 需求

    • 将Desk类中的变量,采用面向对象的方式封装起来
    • 生产者和消费者类中构造方法接收Desk类对象,之后在run方法中进行使用
    • 创建生产者和消费者线程对象,构造方法中传入Desk类对象
    • 开启两个线程
  • 代码实现

    public class Desk {
    
        //定义一个标记
        //true 就表示桌子上有汉堡包的,此时允许吃货执行
        //false 就表示桌子上没有汉堡包的,此时允许厨师执行
        //public static boolean flag = false;
        private boolean flag;
    
        //汉堡包的总数量
        //public static int count = 10;
        //以后我们在使用这种必须有默认值的变量
       // private int count = 10;
        private int count;
    
        //锁对象
        //public static final Object lock = new Object();
        private final Object lock = new Object();
    
        public Desk() {
            this(false,10); // 在空参内部调用带参,对成员变量进行赋值,之后就可以直接使用成员变量了
        }
    
        public Desk(boolean flag, int count) {
            this.flag = flag;
            this.count = count;
        }
    
        public boolean isFlag() {
            return flag;
        }
    
        public void setFlag(boolean flag) {
            this.flag = flag;
        }
    
        public int getCount() {
            return count;
        }
    
        public void setCount(int count) {
            this.count = count;
        }
    
        public Object getLock() {
            return lock;
        }
    
        @Override
        public String toString() {
            return "Desk{" +
                    "flag=" + flag +
                    ", count=" + count +
                    ", lock=" + lock +
                    '}';
        }
    }
    
    public class Cooker extends Thread {
    
        private Desk desk;
    
        public Cooker(Desk desk) {
            this.desk = desk;
        }
    //    生产者步骤:
    //            1,判断桌子上是否有汉堡包
    //    如果有就等待,如果没有才生产。
    //            2,把汉堡包放在桌子上。
    //            3,叫醒等待的消费者开吃。
    
        @Override
        public void run() {
            while(true){
                synchronized (desk.getLock()){
                    if(desk.getCount() == 0){
                        break;
                    }else{
                        //System.out.println("验证一下是否执行了");
                        if(!desk.isFlag()){
                            //生产
                            System.out.println("厨师正在生产汉堡包");
                            desk.setFlag(true);
                            desk.getLock().notifyAll();
                        }else{
                            try {
                                desk.getLock().wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
        }
    }
    
    public class Foodie extends Thread {
        private Desk desk;
    
        public Foodie(Desk desk) {
            this.desk = desk;
        }
    
        @Override
        public void run() {
    //        1,判断桌子上是否有汉堡包。
    //        2,如果没有就等待。
    //        3,如果有就开吃
    //        4,吃完之后,桌子上的汉堡包就没有了
    //                叫醒等待的生产者继续生产
    //        汉堡包的总数量减一
    
            //套路:
                //1. while(true)死循环
                //2. synchronized 锁,锁对象要唯一
                //3. 判断,共享数据是否结束. 结束
                //4. 判断,共享数据是否结束. 没有结束
            while(true){
                synchronized (desk.getLock()){
                    if(desk.getCount() == 0){
                        break;
                    }else{
                        //System.out.println("验证一下是否执行了");
                        if(desk.isFlag()){
                            //有
                            System.out.println("吃货在吃汉堡包");
                            desk.setFlag(false);
                            desk.getLock().notifyAll();
                            desk.setCount(desk.getCount() - 1);
                        }else{
                            //没有就等待
                            //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                            try {
                                desk.getLock().wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
    
        }
    }
    
    public class Demo {
        public static void main(String[] args) {
            /*消费者步骤:
            1,判断桌子上是否有汉堡包。
            2,如果没有就等待。
            3,如果有就开吃
            4,吃完之后,桌子上的汉堡包就没有了
                    叫醒等待的生产者继续生产
            汉堡包的总数量减一*/
    
            /*生产者步骤:
            1,判断桌子上是否有汉堡包
            如果有就等待,如果没有才生产。
            2,把汉堡包放在桌子上。
            3,叫醒等待的消费者开吃。*/
    
            Desk desk = new Desk();
    
            Foodie f = new Foodie(desk);
            Cooker c = new Cooker(desk);
    
            f.start();
            c.start();
    
        }
    }
    

3.4阻塞队列基本使用【理解】

  • 阻塞队列继承结构

  • 常见BlockingQueue:

    ArrayBlockingQueue: 底层是数组,有界

    LinkedBlockingQueue: 底层是链表,无界.但不是真正的无界,最大为int的最大值

  • BlockingQueue的核心方法:

    put(anObject): 将参数放入队列,如果放不进去会阻塞

    take(): 取出第一个数据,取不到会阻塞

  • 代码示例

    public class Demo02 {
        public static void main(String[] args) throws Exception {
            // 创建阻塞队列的对象,容量为 1
            ArrayBlockingQueue<String> arrayBlockingQueue = new ArrayBlockingQueue<>(1);
    
            // 存储元素
            arrayBlockingQueue.put("汉堡包");
    
            // 取元素
            System.out.println(arrayBlockingQueue.take());
            System.out.println(arrayBlockingQueue.take()); // 取不到会阻塞
    
            System.out.println("程序结束了");
        }
    }
    

3.5阻塞队列实现等待唤醒机制【理解】

  • 案例需求

    • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务

      1.构造方法中接收一个阻塞队列对象

      2.在run方法中循环向阻塞队列中添加包子

      3.打印添加结果

    • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务

      1.构造方法中接收一个阻塞队列对象

      2.在run方法中循环获取阻塞队列中的包子

      3.打印获取结果

    • 测试类(Demo):里面有main方法,main方法中的代码步骤如下

      创建阻塞队列对象

      创建生产者线程和消费者线程对象,构造方法中传入阻塞队列对象

      分别开启两个线程

  • 代码实现

    public class Cooker extends Thread {
    
        private ArrayBlockingQueue<String> bd;
    
        public Cooker(ArrayBlockingQueue<String> bd) {
            this.bd = bd;
        }
    //    生产者步骤:
    //            1,判断桌子上是否有汉堡包
    //    如果有就等待,如果没有才生产。
    //            2,把汉堡包放在桌子上。
    //            3,叫醒等待的消费者开吃。
    
        @Override
        public void run() {
            while (true) {
                try {
                    bd.put("汉堡包");
                    System.out.println("厨师放入一个汉堡包");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    
    public class Foodie extends Thread {
        private ArrayBlockingQueue<String> bd;
    
        public Foodie(ArrayBlockingQueue<String> bd) {
            this.bd = bd;
        }
    
        @Override
        public void run() {
    //        1,判断桌子上是否有汉堡包。
    //        2,如果没有就等待。
    //        3,如果有就开吃
    //        4,吃完之后,桌子上的汉堡包就没有了
    //                叫醒等待的生产者继续生产
    //        汉堡包的总数量减一
    
            //套路:
            //1. while(true)死循环
            //2. synchronized 锁,锁对象要唯一
            //3. 判断,共享数据是否结束. 结束
            //4. 判断,共享数据是否结束. 没有结束
            while (true) {
                try {
                    String take = bd.take();
                    System.out.println("吃货将" + take + "拿出来吃了");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
    
        }
    }
    
    public class Demo {
        public static void main(String[] args) {
            ArrayBlockingQueue<String> bd = new ArrayBlockingQueue<>(1);
    
            Foodie f = new Foodie(bd);
            Cooker c = new Cooker(bd);
    
            f.start();
            c.start();
        }
    }
    

标签:Thread,汉堡包,void,初级,线程,new,多线程,public
From: https://www.cnblogs.com/daniuma/p/17219834.html

相关文章

  • 初级 - redis 安装
    1、redis概述redis官网地址:https://redis.io/redisgithub地址:https://github.com/redis/redis/tree/6.22、redis安装2.1redisdocker-compose安装1、先去gith......
  • linux系统如何查看是否是线程死锁,多线程中如何使用gdb精确定位死锁问题
    在多线程开发过程中很多人应该都会遇到死锁问题,死锁问题也是面试过程中经常被问到的问题,这里介绍在c++中如何使用gdb+python脚本调试死锁问题,以及如何在程序运行过程中......
  • Python多线程的坑——切换工作目录导致错误
    Python多线程的坑——切换工作目录导致错误复现:importosimporttimefromconcurrent.futuresimportThreadPoolExecutordefthread_func(a):origin=os.get......
  • Linux系统中多线程实现方法的全面解析
    ​线程引入:     在传统的Unix模型中,当一个进程需要由另一个实体执行某件事时,该进程派生(fork)一个子进程,让子进程去进行处理。Unix下的大多数网络服务器程序都是这么......
  • Day 16 16.4 案例分析之对比单线程与多线程
    线程案例:爬取斗图吧表情包图片方案一:单线程版本耗时慢importrequestsfromfake_useragentimportUserAgentimportrandomfromlxmlimportetreeimportosimpo......
  • python入门学习-3.多线程、多进程、网络通信
    进程和线程多任务线程是最小的执行单元,而进程由至少一个线程组成。多进程Linux操作系统提供了一个fork()系统调用,子进程返回0,父进程返回子进程的ID。调用getpid()可以......
  • 多线程
    多线程1.创建线程方式创建线程方式一:继承Thread类,重写run()方法,调用start开启线程总结:线程开启不一定立即执行,有cpu调度执行packagecom.zhang.linePro;publicclassTe......
  • c++11多线程入门<学习记录>
    最近学习了c++多线程相关知识,也算是对这方面内容的入门视频链接c++11并发与多线程视频课程看了大概两周,简单进行总结参考文章C++11并发与多线程PS:c++11提供了标准的可......
  • GDB多线程调试-发现卡死的线程
    背景在开发项目的一个feature时,发现有一个线程hang住,一直无法向元数据管理模块发送心跳,导致线程所在的机器被drop掉,组里的一个同学使用gdb找到了hang住的原因,于是自己也......
  • MFC-多线程
             ......