首页 > 其他分享 >「解题报告」ARC154F Dice Game

「解题报告」ARC154F Dice Game

时间:2023-03-15 16:46:19浏览次数:57  
标签:ARC154F return Dice int second len Game Polynomial first

看起来就多项式,跟概率有关就上概率生成函数吧。

考虑类似于 Flip Cells 的套路,设 \(F(x)\) 为翻出所有的生成函数,\(G(x)\) 为第一次翻出所有的生成函数,\(H(x)\) 是翻出后任意翻的生成函数,那么有 \(F(x)=G(x)H(x)\)。

\(H(x)\) 显然等于 \(\frac{1}{1-x}\),即全翻出来之后可以随便翻,考虑 \(F(x)\)。\(F(x)\) 可以看作是每一面至少翻出了 \(1\) 次,然后将操作序列合并起来。先写出 EGF 的形式,即 \((e^{\frac{x}{n}} - 1)^n\)。然后转成 OGF,即 \(\sum_{i=0}^n \binom{n}{i}(-1)^{n-i}\frac{1}{1-\frac{ix}{n}}\)。这个东西可以分治乘法求出 \(\frac{A(x)}{B(x)}\) 的形式。那么我们就有 \(G(x)=(1-x)F(x)\) 了。

然后考虑如何求 \(k\) 次方的贡献。有个结论,\([x^k]F(e^x)\) 就是 \(k\) 次方的期望。证明展开。

考虑怎么求 \(F(e^x)\),同样可以先转成 OGF,同样的分治乘法的办法求出来之后再转回去。然后就能求出答案了。

用这个式子求出来之后会发现分子分母都没有常数项,需要上下同时除以一个 \(x\)。

人傻常数大,还需要卡常。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 600005, P = 998244353, G = 3;
int qpow(int a, int b) {
    int ans = 1;
    while (b) {
        if (b & 1) ans = 1ll * ans * a % P;
        a = 1ll * a * a % P;
        b >>= 1;
    }
    return ans;
}
const int GI = qpow(G, P - 2);
int r[MAXN];
struct Polynomial {
    vector<int> a;
    int len;
    int& operator[](int b) { return a[b]; }
    Polynomial(int len = 0) : len(len) { a.resize(len + 1); }
    Polynomial(initializer_list<int> l) : len(l.size() - 1), a(l) {}
    Polynomial& set(int b) { len = b, a.resize(b + 1); return *this; }
    static Polynomial resize(Polynomial a, int s) { Polynomial b = a; return b.set(s); }
    void reverse() { std::reverse(a.begin(), a.end()); }
    static void calcRev(int limit) {
        for (int i = 1; i < limit; i++)
            r[i] = (r[i >> 1] >> 1) | ((i & 1) * limit >> 1);
    }
    void ntt(int limit, bool rev) {
        set(limit);
        for (int i = 0; i < limit; i++)
            if (i < r[i]) swap(a[i], a[r[i]]);
        for (int mid = 1; mid < limit; mid <<= 1) {
            int step = qpow(rev ? GI : G, (P - 1) / (mid << 1));
            for (int l = 0; l < limit; l += (mid << 1)) {
                int w = 1;
                for (int j = 0; j < mid; j++, w = 1ll * w * step % P) {
                    int x = a[l + j], y = 1ll * w * a[l + j + mid] % P;
                    a[l + j] = (x + y) % P, a[l + j + mid] = (1ll * P + x - y) % P;
                }
            }
        }
        int invn = qpow(limit, P - 2);
        if (rev) {
            for (int i = 0; i < limit; i++) 
                a[i] = 1ll * a[i] * invn % P;
        }
    }
    void print() { for (int i : a) printf("%d ", i); printf("\n"); }
    Polynomial operator*(Polynomial b) {
        Polynomial a = *this, c;
        int n = a.len + b.len;
        int limit = 1;
        while (limit <= n) limit <<= 1;
        c.set(limit);
        calcRev(limit);
        a.ntt(limit, 0), b.ntt(limit, 0);
        for (int i = 0; i <= limit; i++) c[i] = 1ll * a[i] * b[i] % P;
        c.ntt(limit, 1);
        c.set(n);
        return c;
    }
    Polynomial operator*(int b) {
        Polynomial c = *this;
        for (int& i : c.a) i = 1ll * i * b % P;
        return c;
    }
    Polynomial operator+(int b) {
        Polynomial c = *this;
        c[0] = (1ll * c[0] + b + P) % P;
        return c;
    }
    Polynomial operator+(Polynomial b) {
        Polynomial c = *this;
        c.set(max(c.len, b.len));
        for (int i = 0; i <= b.len; i++) c[i] = (c[i] + b[i]) % P;
        return c;
    }
    Polynomial operator-(Polynomial b) {
        Polynomial c = *this;
        c.set(max(c.len, b.len));
        for (int i = 0; i <= b.len; i++) c[i] = (c[i] - b[i] + P) % P;
        return c;
    }
    Polynomial inv(int n) {
        Polynomial b;
        b[0] = qpow(a[0], P - 2);
        for (int d = 2; d < (n << 1); d <<= 1) {
            Polynomial a = *this;
            a.set(d - 1);
            int limit = d << 1;
            calcRev(limit);
            a.ntt(limit, 0), b.ntt(limit, 0);
            for (int i = 0; i < limit; i++) b[i] = (2ll - 1ll * a[i] * b[i] % P + P) % P * b[i] % P;
            b.ntt(limit, 1);
            b.set(d - 1);
        }
        b.set(n - 1);
        return b;
    }
    Polynomial sqrt(int n) {
        static int TWOINV = qpow(2, P - 2);
        Polynomial b;
        b[0] = 1;
        for (int d = 2; d < (n << 1); d <<= 1) {
            Polynomial a = *this, c = b.inv(d);
            a.set(d - 1);
            int limit = d << 1;
            calcRev(limit);
            a.ntt(limit, 0), c.ntt(limit, 0);
            for (int i = 0; i < limit; i++) a[i] = 1ll * a[i] * c[i] % P;
            a.ntt(limit, 1);
            b.set(d - 1);
            for (int i = 0; i < d; i++) b[i] = 1ll * (a[i] + b[i]) * TWOINV % P;
        }
        b.set(n - 1);
        return b;
    }
    Polynomial derivative() {
        Polynomial b(len - 1);
        for (int i = 1; i <= len; i++) b[i - 1] = 1ll * a[i] * i % P;
        return b;
    }
    Polynomial integral() {
        Polynomial b(len + 1);
        for (int i = 0; i <= len; i++) b[i + 1] = 1ll * a[i] * qpow(i + 1, P - 2) % P;
        return b;
    }
    Polynomial ln(int n) {
        return (derivative() * inv(n)).integral().set(n - 1);
    }
    Polynomial exp(int n) {
        Polynomial b;
        b[0] = 1;
        for (int d = 1; d < (n << 1); d <<= 1) {
            Polynomial a = *this, e = b.ln(d);
            a.set(d - 1);
            b = b * (e * (P - 1) + a + 1);
            b.set(d - 1);
        }
        b.set(n - 1);
        return b;
    }
    Polynomial pow(int b, int n) {
        return (ln(n) * b).exp(n);
    }
    pair<Polynomial, Polynomial> operator/(Polynomial b) {
        int n = len, m = b.len;
        Polynomial ra = *this, rb = b, rc, d;
        ra.reverse(), rb.reverse();
        rc = ra * rb.inv(n - m + 1);
        rc.set(n - m);
        rc.reverse();
        d = *this - b * rc;
        d.set(m - 1);
        return make_pair(rc, d);
    }
} a;
int n, m;
int fac[MAXN], inv[MAXN];
void pre(int n) {
    fac[0] = 1;
    for (int i = 1; i <= n; i++) {
        fac[i] = 1ll * fac[i - 1] * i % P;
    }
    inv[n] = qpow(fac[n], P - 2);
    for (int i = n; i >= 1; i--) {
        inv[i - 1] = 1ll * inv[i] * i % P;
    }
}
int C(int n, int m) {
    if (n < 0 || m < 0 || n < m) return 0;
    return 1ll * fac[n] * inv[m] % P * inv[n - m] % P;
}
pair<Polynomial, Polynomial> solve(int l, int r) {
    if (l == r) {
        if (l == 0) {
            return { 
                Polynomial{ (int) (C(n, l) * (((n - l) & 1) ? P - 1ll : 1ll) % P) }, 
                Polynomial{ 1 } 
            };
        }
        return { 
            Polynomial{ (int) (C(n, l) * (((n - l) & 1) ? P - 1ll : 1ll) % P) }, 
            Polynomial{ 1, (int) ((P - 1ll) * l % P * qpow(n, P - 2) % P) } 
        };
    }
    int mid = (l + r) >> 1;
    auto a = solve(l, mid), b = solve(mid + 1, r);
    if (a.first.len == 0 && a.first[0] == 0) return b;
    return { a.first * b.second + a.second * b.first, a.second * b.second };
}
pair<Polynomial, Polynomial> solve2(Polynomial &p, int l, int r) {
    if (l == r) {
        if (l == 0) {
            return { Polynomial{ p[l] }, Polynomial{ 1 } };
        }
        return { 
            Polynomial{ p[l] }, 
            Polynomial{ 1, P - l } 
        };
    }
    int mid = (l + r) >> 1;
    auto a = solve2(p, l, mid), b = solve2(p, mid + 1, r);
    if (a.first.len == 0 && a.first[0] == 0) return b;
    return { a.first * b.second + a.second * b.first, a.second * b.second };
}
Polynomial solve3(Polynomial f) {
    auto g = solve2(f, 0, f.len);
    // g.first.print();
    // g.second.print();
    auto h = (g.first * g.second.inv(m + 1)).set(m + 1);
    for (int i = 0; i <= h.len; i++) {
        h[i] = 1ll * h[i] * inv[i] % P;
    }
    return h;
}
int main() {
    scanf("%d%d", &n, &m);
    pre(n + m);
    auto f = solve(0, n);
    f.first = solve3(f.first * Polynomial{ 1, P - 1 });
    f.second = solve3(f.second);
    auto a = Polynomial(f.first.len - 1);
    for (int i = 1; i <= f.first.len; i++)
        a[i - 1] = f.first[i];
    auto b = Polynomial(f.second.len - 1);
    for (int i = 1; i <= f.second.len; i++)
        b[i - 1] = f.second[i];
    auto g = (a * b.inv(m + 1)).set(m);
    for (int i = 0; i <= g.len; i++) {
        g[i] = 1ll * g[i] * fac[i] % P;
    }
    for (int i = 1; i <= m; i++) {
        printf("%d\n", g[i]);
    }
    return 0;
}

标签:ARC154F,return,Dice,int,second,len,Game,Polynomial,first
From: https://www.cnblogs.com/apjifengc/p/17219060.html

相关文章

  • CodeForces 1147F Zigzag Game
    洛谷传送门CF传送门很有意思的题。考虑若无边权的限制则B必胜,不妨猜想有了限制之后仍然是B必胜。假设A选了I(若A选了D可以边权取相反数),若B走了\((a,b)\)......
  • Codeforces Round #666 (Div. 2)D. Stoned Game(博弈问题)
    problemT和HL玩游戏,n堆石头,玩家轮流在石堆中选择一个(但不能是上一个人取的那堆)取一个石子一旦有一方不能取石头则判输solution统计所有石头数,如果总数小于mx(最多石头的一堆)......
  • FinalHgame wp
    ssti常规的sstiphp-blogadmin12345进入后台,发一篇文章,内容填<?phpeval($_POST['pass']);直接getshell然后在login.php里面加一句file_put_contents('login.txt',......
  • Game On Graph
    最近总是见到在有向图上面移棋子的博弈论题,都是如果把有向图换成DAG就很naive的,核心问题都在于如何处理环,所以来记一记。Alice负责走棋子,在Alice走之前Bob可以......
  • A. Stone Game
    A.StoneGame代码点击查看代码#include<iostream>#include<vector>#include<algorithm>usingnamespacestd;intmain(){ intt; cin>>t; while(t--){ ......
  • A. Computer Game【dfs诈骗】
    A.ComputerGame代码点击查看代码#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>#include<cmath>#include<vector>#include<queue......
  • Games101-Cp1-Transformation
    最近为了求职重新开始把图形学相关的内容重新系统的学习,先把Games101的内容入门,然后把虎书相关的内容补充。Transformation矩阵变换可以对不同坐标系之间进行转换,在这个......
  • CF207C3 Game with Two Trees 题解
    脑子不够,科技来凑。不过好像也没有用多么高级的科技……首先这个题目很坏,它让你翻转\(S_{t_2}\)。即从\(t_2\)某个节点往下走到另一个节点的路径所表示的字符串。这个......
  • 语义分割评价指标(Dice coefficient, IoU)
    语义分割任务常用的评价指标为Dicecoefficient和IoU。Dice和IoU都是用来衡量两个集合之间相似性的度量,对于语义分割任务而言即用来评估网络预测的分割结果与人为标注结果......
  • [数学记录]arc154F Dice Game
    看这篇看懂的,感觉比洛谷题解的两篇具体不少。来写一下翻译。看懂后觉得官方题解更简练的,但显然我还是新手。思维走过的道路是无可替代的。题意:\(n\)面的骰子每次随......