1.描述性统计分析
import numpy as np import pandas as pd inputfile = 'D:/桌面文件/python图表/data.csv' # 输入的数据文件 data = pd.read_csv(inputfile) # 读取数据 # 描述性统计分析 # 依次计算最小值、最大值、均值、标准差 description = [data.min(), data.max(), data.mean(), data.std()] description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T # 将结果存入数据框 print(' 3055郑佰强') print('描述性统计结果:\n',np.round(description, 2)) # 保留两位小数
2.相关性分析
# 相关性分析(person相关系数) corr = data.corr(method = 'pearson') # 计算相关系数矩阵 print(' 3055郑佰强') print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数
# 绘制热力图 import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif']='SimHei' plt.subplots(figsize=(10,10)) # 设置画面大小 sns.heatmap(corr,annot=True,vmax=1,square=True,linewidth=9,cmap="Blues") plt.title('相关性热力图 3055郑佰强') plt.show() plt.close
# 绘制热力图 import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif']='SimHei' plt.subplots(figsize=(10,10)) # 设置画面大小 sns.heatmap(corr,annot=True,vmax=1,square=True,cmap="Blues") plt.title('相关性热力图 3055郑佰强') plt.show() plt.close
# 绘制热力图 import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif']='SimHei' plt.subplots(figsize=(10,10)) # 设置画面大小 sns.heatmap(corr,annot=True,vmax=1,square=True) plt.title('相关性热力图 3055郑佰强') plt.show() plt.close
3.Lasso回归选取关键属性
#Lasso回归选取关键属性
import numpy as np import pandas as pd from sklearn.linear_model import Lasso inputfile = 'D:/桌面文件/python图表/data.csv' data = pd.read_csv(inputfile) # 读取数据 lasso = Lasso(1000) lasso.fit(data.iloc[:,0:14],data['y']) print(' 3055郑佰强') print('相关系数为:',np.round(lasso.coef_,5))#输出结果,保留五位小数 print('相关系数非零个数为:',np.sum(lasso.coef_ != 0))#计算相关系数非零的个数 mask = lasso.coef_ != 0 #返回一个相关系数是否为0的布尔数组 print('相关系数是否为零: ',mask) outputfile = 'D:/桌面文件/python图表/new_reg_data.csv' #输出的数据文件 new_reg_data = data.iloc[:, mask] #返回相关系数非零的数据 new_reg_data.to_csv(outputfile) #存储数据 print('输出数据的维度为:',new_reg_data.shape) #查看输出数据的维度
4.构建灰度预测模型 import sys sys.path.append('D:/Users/JupyterLab-Portable-3.1.0-3.9/notebooks/数据挖掘/charapter6/demo/code') # 设置路径 import numpy as np import pandas as pd from GM11 import GM11 # 引入自编的灰色预测函数 inputfile1 = 'D:/Users/JupyterLab-Portable-3.1.0-3.9/notebooks/数据挖掘/data/new_reg_data.csv' # 输入的数据文件 inputfile2 = 'D:/Users/JupyterLab-Portable-3.1.0-3.9/notebooks/数据挖掘/data/data.csv' # 输入的数据文件 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 data = pd.read_csv(inputfile2) # 读取总的数据 new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None new_reg_data.loc[2016] = None l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] for i in l: f=GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果 new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果 new_reg_data.loc[2016,i] = f(len(new_reg_data+1)) # 2016年预测结果 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 outputfile = 'D:/Users/JupyterLab-Portable-3.1.0-3.9/notebooks/数据挖掘/data/new_reg_data_GM11_2016.csv' # 灰色预测后保存的路径 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 y.extend([np.nan,np.nan,np.nan]) new_reg_data['y'] = y new_reg_data.to_csv(outputfile) # 结果输出 print('预测结果为:\n',new_reg_data.loc[2014:2016,:]) # 预测结果展示
5.构建支持向量机模型
#构建支持向量机回归模型
import matplotlib.pyplot as plt from sklearn.svm import LinearSVR plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 inputfile = 'D:/桌面文件/python图表/new_reg_data_GM11(2).csv' # 灰色预测后保存的路径 data = pd.read_csv(inputfile) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 data_train = data.iloc[0:20].copy() # 取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean)/data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train,y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] outputfile = 'D:/桌面文件/python图表/new_reg_data_GM11_revenue.csv' # SVR预测后保存的结果 data.to_csv(outputfile) print('真实值与预测值分别为:\n',data[['y','y_pred']]) fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 plt.title('地方财政收入真实值与预测值对比图 3055郑佰强') plt.show()
标签:数据分析,plt,import,new,csv,data,reg From: https://www.cnblogs.com/ZBQZQL/p/17181382.html