首页 > 其他分享 >Lambda表达式和Stream API

Lambda表达式和Stream API

时间:2022-09-07 14:37:10浏览次数:101  
标签:Stream stream 元素 API limit new 操作 Lambda

Lambda表达式和Stream API

Lambda表达式是Java SE 8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。 lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块)。 Lambda表达式还增强了集合库。 Java SE 8添加了2个对集合数据进行批量操作的包: java.util.function 包以及 java.util.stream 包。 流(stream)就如同迭代器(iterator),但附加了许多额外的功能。 总的来说,lambda表达式和 stream 是自Java语言添加泛型(Generics)和注解(annotation)以来最大的变化。 在本文中,我们将从简单到复杂的示例中见认识lambda表达式和stream的强悍。

lambada表达式和代码块可以理解为函数式接口的匿名实现类。

Lambda 定义: 把Lambda表达式理解为简洁地表示可传递的匿名函数的一种方式:它没有名称,但它有参数列表、函数主体、返回类型,可能还有一个可以抛出的异常列表。

  • 匿名——我们说匿名,是因为它不像普通的方法那样有一个明确的名称:写得少而想得多

  • 函数——我们说它是函数,是因为Lambda函数不像方法那样属于某个特定的类。但和方 法一样,Lambda有参数列表、函数主体、返回类型,还可能有可以抛出的异常列表。

  • 传递——Lambda表达式可以作为参数传递给方法或存储在变量中。

  • 简洁——无需像匿名类那样写很多模板代码。

Lambda表达式的语法
基本语法:
(parameters) -> expression     //表达式,表达式只能有一行代码

(parameters) ->{ statements; } //代码块,和方法一样,具有多行代码

下面是java Lambada表达式的简单示例

​
// 1. 不需要参数,返回值为 5
() -> 5
 
// 2. 接收一个参数(数字类型),返回其2倍的值
x -> 2 * x
 
// 3. 接受2个参数(数字),并返回他们的差值
(x, y) -> x – y
 
// 4. 接收2个int型整数,返回他们的和
(int x, int y) -> x + y
 
// 5. 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)
(String s) -> System.out.print(s)

函数式编程思想

在java8中新增了一个注解,@FunctionalInterface,这个接口用于标注一个接口中有且仅有一个抽象方法,可以有多个默认方法;重写来自于Object类中的方法时,不算做抽象方法。如果这个接口中有1个以上的抽象方法,则@FunctionalInterface注解就从语法层面上导致代码编译失败;

@FunctionalInterface
public interface DemoInterface{
    void a();
    void b(); //多出的一个抽象方法会导致接口编译失败
    boolean equals(Object object);//接口的实现类可以不用实现equals,因为Object类中已经默认实现了
    int hashcode();
    //默认方法
    default void test(){
        
    }
}

 

java.util.function包中接口的含义

Predicate<T> 断言的作用

//接收泛型的参数,返回布尔值,通常用于验证,判断等操作
boolean test(T t);
Consumer<T> 消费的接口,消费参数

//表示接收单个参数,但不返回结果
void accept(T t);
Function<T,R> 具有转型功能函数。

//将参数T类型的对象转换为R类型
R apply(T t);
​
//好比调用apply方法,传递的参数是1个w,方法返回一个兰博基尼
Supplier<T> 好比一个生成器

//产生一个结果的方法
T get();
UnaryOperator<T>

//表示对单个操作数执行的操作,该操作产生与其操作数类型相同的结果。这是针对操作数和结果类型相同的情况的函数专门化
static <T> UnaryOperator<T> identity() {
        return t -> t;
    }
BinaryOperator<T>

//继承自BiFunction,在使用BinaryOperator接口时,通常只会用他的静态方法
​
//返回两个数中小的数
public static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator) {
        Objects.requireNonNull(comparator);
        return (a, b) -> comparator.compare(a, b) <= 0 ? a : b;
}
​
//返回两个数中大的数
public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) {
        Objects.requireNonNull(comparator);
        return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;
}

StreamAPI

Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。

什么是聚合操作

在传统的 J2EE 应用中,Java 代码经常不得不依赖于关系型数据库的聚合操作来完成诸如:

  • 客户每月平均消费金额

  • 最昂贵的在售商品

  • 本周完成的有效订单(排除了无效的)

  • 取十个数据样本作为首页推荐

这类的操作。

但在当今这个数据大爆炸的时代,在数据来源多样化、数据海量化的今天,很多时候不得不脱离 RDBMS,或者以底层返回的数据为基础进行更上层的数据统计。而 Java 的集合 API 中,仅仅有极少量的辅助型方法,更多的时候是程序员需要用 Iterator 来遍历集合,完成相关的聚合应用逻辑。这是一种远不够高效、笨拙的方法。在 Java 7 中,如果要发现 type 为 grocery 的所有交易,然后返回以交易值降序排序好的交易 ID 集合,我们需要这样写:

清单 1. Java 7 的排序、取值实现
List<Transaction> groceryTransactions = new Arraylist<>();//用于保存类型为grocery的集合
for(Transaction t: transactions){ //遍历集合
    if(t.getType() == Transaction.GROCERY){//判断对象的种类是否为grocery
        groceryTransactions.add(t);//将类型为grocery对象添加到新的集合中
    }
}
//对类型为grocery的集合排序
Collections.sort(groceryTransactions, new Comparator(){ //匿名实现类
    public int compare(Transaction t1, Transaction t2){ //重写接口中的方法
        return t2.getValue().compareTo(t1.getValue()); //根据交易之降序排序
    }
});
List<Integer> transactionIds = new ArrayList<>();//声明一个空的集合,泛型为Integer
for(Transaction t: groceryTransactions){//遍历排好序的类型为grocery的集合
    transactionsIds.add(t.getId()); //将每个元素的id保存到Integer集合中
}

而在 Java 8 使用 Stream,代码更加简洁易读;而且使用并发模式,程序执行速度更快。

清单 2. Java 8 的排序、取值实现
List<Integer> transactionsIds = transactions.parallelStream()  //并行模式的Stream
    .filter(t -> t.getType() == Transaction.GROCERY)  //过滤,只保留集合中类型为grocery的数据
    .sorted(comparing(Transaction::getValue).reversed())//排序,先升序,再降序
    .map(Transaction::getId) //将每个Transaction对象转换为integer类型
    .collect(toList()); //最后一步,将所有的数据转换到集合中

什么是流

Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。

而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:

  1. 1.0-1.4 中的 java.lang.Thread 多线程

  2. 5.0 中的 java.util.concurrent 并发的解决方案

  3. 6.0 中的 Phasers 等

  4. 7.0 中的 Fork/Join 框架 并行解决方案

  5. 8.0 中的 Lambda 表达式

Stream 的另外一大特点是,数据源本身可以是无限的。

流的构成

当我们使用一个流的时候,通常包括三个基本步骤:

获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道,如下图所示。

 

有多种方式生成 Stream Source:

从 Collection 和数组

Collection.stream() 串行的Stream

Collection.parallelStream() 并行的Stream

Arrays.stream(T array) or Stream.of()

从 BufferedReader

java.io.BufferedReader.lines()

静态工厂

java.util.stream.IntStream.range()

java.nio.file.Files.walk()

自己构建

java.util.Spliterator

其它

Random.ints()

BitSet.stream()

Pattern.splitAsStream(java.lang.CharSequence)

JarFile.stream()

流的操作类型分为两种:

  • Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。

  • Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。

在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。

还有一种操作被称为 short-circuiting。用以指:

  • 对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。

  • 对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。

清单 3. 一个流操作的示例
int sum = widgets.stream()
    .filter(w -> w.getColor() == RED) //过滤,只保留颜色为红色的元素
     .mapToInt(w -> w.getWeight())  //取出w对象中的体重,转换为int类型
    .sum();//终止操作,将所有的int类型的体重累加求和

stream() 获取当前小物件的 source,filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换,最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。

流的使用详解

简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。

流的构造与转换

下面提供最常见的几种构造 Stream 的样例。

清单 4. 构造流的几种常见方法
// 1. Individual values
Stream stream = Stream.of("a", "b", "c");
// 2. Arrays
String [] strArray = new String[] {"a", "b", "c"};
stream = Stream.of(strArray);
stream = Arrays.stream(strArray);
// 3. Collections
List<String> list = Arrays.asList(strArray);
stream = list.stream();

要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:

IntStream、LongStream、DoubleStream。当然我们也可以用 Stream<Integer>、Stream<Long> 、Stream<Double>,但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的 Stream。

Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。

清单 5. 数值流的构造
IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);
IntStream.range(1, 3).forEach(System.out::println); //生成1,2两个数
IntStream.rangeClosed(1, 3).forEach(System.out::println);//生成1,2,3 这三个是数
清单 6. 流转换为其它数据结构
// 1. Array
Object[] objects = stream.toArray(); //弊端是数组是Object,需要拆箱
String[] strArray1 = stream.toArray(String[]::new); //方法引用的写法
String[] strArray2 = stream.toArray(size -> new String[size]); //lambda表达式的写法

// 2. Collection
//Collectors是一个工具类
//注意:Collection,Collections,Collectors的区别
//Collectors对Stream的工具类。目的是将stream转换为各种不同的集合
List<String> list1 = stream.collect(Collectors.toList());
List<String> list2 = stream.collect(Collectors.toCollection(ArrayList::new));
Set set1 = stream.collect(Collectors.toSet());
Stack stack1 = stream.collect(Collectors.toCollection(Stack::new));
// 3. String
String str = stream.collect(Collectors.joining()).toString();//将集合的元素转换为字符串

一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。

流的操作

接下来,当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。

Intermediate:

map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered

Terminal:

forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator

Short-circuiting:

anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

我们下面看一下 Stream 的比较典型用法。

map/flatMap

我们先来看 map。如果你熟悉 scala 这类函数式语言,对这个方法应该很了解,它的作用就是把 input Stream 的每一个元素,映射成 output Stream 的另外一个元素。

清单 7. 转换大写
List<String> output = wordList.stream()
    //.map(String::toUpperCase)
    .map(str -> str.toUpperCase())
    .collect(Collectors.toList());

这段代码把所有的单词转换为大写。

清单 8. 平方数
List<Integer> nums = Arrays.asList(1, 2, 3, 4);
List<Integer> squareNums = nums.stream()
    //.map(n -> n * n)
    .map(n-> {return n*n;})
    .collect(Collectors.toList());

这段代码生成一个整数 list 的平方数 {1, 4, 9, 16}。

从上面例子可以看出,map 生成的是个 1:1 映射,每个输入元素,都按照规则转换成为另外一个元素。还有一些场景,是一对多映射关系的,这时需要 flatMap。

清单 9. 一对多
Stream<List<Integer>> inputStream = Stream.of(
 Arrays.asList(1),
 Arrays.asList(2, 3),
 Arrays.asList(4, 5, 6)
 );
Stream<Integer> outputStream = inputStream.
flatMap((childList) -> childList.stream());

flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。

filter

filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。

清单 10. 留下偶数
Integer[] sixNums = {1, 2, 3, 4, 5, 6};
Integer[] evens =
Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);

经过条件“被 2 整除”的 filter,剩下的数字为 {2, 4, 6}。

清单 11. 把单词挑出来
List<String> output = reader.lines()
     .flatMap(line -> Stream.of(line.split(REGEXP)))
     .filter(word -> word.length() > 0)
     .collect(Collectors.toList());

这段代码首先把每行的单词用 flatMap 整理到新的 Stream,然后保留长度不为 0 的,就是整篇文章中的全部单词了。

forEach

forEach 方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。

清单 12. 打印姓名(forEach 和 pre-java8 的对比)
// Java 8
roster.stream()
     .filter(p -> p.getGender() == Person.Sex.MALE)
     .forEach(p -> System.out.println(p.getName()));
// Pre-Java 8
for (Person p : roster) {
     if (p.getGender() == Person.Sex.MALE) {
         System.out.println(p.getName());
     }
}

对一个人员集合遍历,找出男性并打印姓名。可以看出来,forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非常方便。当需要为多核系统优化时,可以 parallelStream().forEach(),只是此时原有元素的次序没法保证,并行的情况下将改变串行时操作的行为,此时 forEach 本身的实现不需要调整,而 Java8 以前的 for 循环 code 可能需要加入额外的多线程逻辑。

但一般认为,forEach 和常规 for 循环的差异不涉及到性能,它们仅仅是函数式风格与传统 Java 风格的差别。

另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:

     stream.forEach(element -> doOneThing(element));
     stream.forEach(element -> doAnotherThing(element));

相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。如下是出现在该 api javadoc 上的一个示例。

清单 13. peek 对每个元素执行操作并返回一个新的 Stream
Stream.of("one", "two", "three", "four")
 .filter(e -> e.length() > 3)
 .peek(e -> System.out.println("Filtered value: " + e))
 .map(String::toUpperCase)
 .peek(e -> System.out.println("Mapped value: " + e))
 .collect(Collectors.toList());

forEach 不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。

findFirst

这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。

这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。使用它的目的是尽可能避免 NullPointerException。

清单 14. Optional 的两个用例
String strA = " abcd ", strB = null;
print(strA);
print("");
print(strB);
getLength(strA);
getLength("");
getLength(strB);
public static void print(String text) {
 // Java 8
 Optional.ofNullable(text).ifPresent(System.out::println);
 // Pre-Java 8
 if (text != null) {
 System.out.println(text);
 }
 }
public static int getLength(String text) {
 // Java 8
return Optional.ofNullable(text).map(String::length).orElse(-1);
 // Pre-Java 8
// return if (text != null) ? text.length() : -1;
 };

在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。

Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。

reduce

这个方法的主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于

Integer sum = integers.reduce(0, (a, b) -> a+b); 或

Integer sum = integers.reduce(0, Integer::sum);

也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。

清单 15. reduce 的用例
// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat); 
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min); 
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F").
 filter(x -> x.compareTo("Z") > 0).
 reduce("", String::concat);

上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。

limit/skip

limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。

清单 16. limit 和 skip 对运行次数的影响
public void testLimitAndSkip() {
     List<Person> persons = new ArrayList();
     for (int i = 1; i <= 10000; i++) {
         Person person = new Person(i, "name" + i);
         persons.add(person);
     }
    List<String> personList2 = persons.stream().
        map(Person::getName).limit(10).skip(3).collect(Collectors.toList());
     System.out.println(personList2);
}
private class Person {
 public int no;
 private String name;
 public Person (int no, String name) {
     this.no = no;
     this.name = name;
 }
 public String getName() {
     System.out.println(name);
     return name;
 }
}

输出结果为:

name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]

这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。

有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。

清单 17. limit 和 skip 对 sorted 后的运行次数无影响
List<Person> persons = new ArrayList();
 for (int i = 1; i <= 5; i++) {
     Person person = new Person(i, "name" + i);
     persons.add(person);
 }
List<Person> personList2 = persons.stream().sorted((p1, p2) -> 
    p1.getName().compareTo(p2.getName()))
    .limit(2).
    collect(Collectors.toList());
System.out.println(personList2);

上面的示例对清单 13 做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。输出结果为:

name2
name1
name3
name2
name4
name3
name5
name4
[stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]

即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。

最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。

sorted

对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。我们对清单 14 进行优化:

清单 18. 优化:排序前进行 limit 和 skip

点击查看代码清单

https://www.ibm.com/developerworks/cn/java/j-lo-java8streamapi/#N101E8

结果会简单很多:

name2
name1
[stream.StreamDW$Person@6ce253f1, stream.StreamDW$Person@53d8d10a]

当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。

min/max/distinct

min 和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。

清单 19. 找出最长一行的长度
BufferedReader br = new BufferedReader(new FileReader("c:\\SUService.log"));
int longest = br.lines().
 mapToInt(String::length).
 max().
 getAsInt();
br.close();
System.out.println(longest);

下面的例子则使用 distinct 来找出不重复的单词。

清单 20. 找出全文的单词,转小写,并排序
List<String> words = br.lines().
 flatMap(line -> Stream.of(line.split(" "))).
 filter(word -> word.length() > 0).
 map(String::toLowerCase).
 distinct().
 sorted().
 collect(Collectors.toList());
br.close();
System.out.println(words);

Match

Stream 有三个 match 方法,从语义上说:

  • allMatch:Stream 中全部元素符合传入的 predicate,返回 true

  • anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true

  • noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true

它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。对清单 13 中的 Person 类稍做修改,加入一个 age 属性和 getAge 方法。

清单 21. 使用 Match
List<Person> persons = new ArrayList();
persons.add(new Person(1, "name" + 1, 10));
persons.add(new Person(2, "name" + 2, 21));
persons.add(new Person(3, "name" + 3, 34));
persons.add(new Person(4, "name" + 4, 6));
persons.add(new Person(5, "name" + 5, 55));
boolean isAllAdult = persons.stream().
 allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);
boolean isThereAnyChild = persons.stream().
 anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);

输出结果:

 All are adult? false
 Any child? true

进阶:自己生成流

Stream.generate

通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制 Stream 大小。

清单 22. 生成 10 个随机整数
Random seed = new Random();
Supplier<Integer> random = seed::nextInt;
Stream.generate(random).limit(10).forEach(System.out::println);
//Another way
IntStream.generate(() -> (int) (System.nanoTime() % 100)).
limit(10).forEach(System.out::println);

Stream.generate() 还接受自己实现的 Supplier。例如在构造海量测试数据的时候,用某种自动的规则给每一个变量赋值;或者依据公式计算 Stream 的每个元素值。这些都是维持状态信息的情形。

清单 23. 自实现 Supplier
Stream.generate(new PersonSupplier()).
limit(10).
forEach(p -> System.out.println(p.getName() + ", " + p.getAge()));
private class PersonSupplier implements Supplier<Person> {
 private int index = 0;
 private Random random = new Random();
 @Override
 public Person get() {
 return new Person(index++, "StormTestUser" + index, random.nextInt(100));
 }
}

输出结果:

StormTestUser1, 9
StormTestUser2, 12
StormTestUser3, 88
StormTestUser4, 51
StormTestUser5, 22
StormTestUser6, 28
StormTestUser7, 81
StormTestUser8, 51
StormTestUser9, 4
StormTestUser10, 76

Stream.iterate

iterate 跟 reduce 操作很像,接受一个种子值,和一个 UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。

清单 24. 生成一个等差数列

     Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));.

输出结果:

     0 3 6 9 12 15 18 21 24 27

与 Stream.generate 相仿,在 iterate 时候管道必须有 limit 这样的操作来限制 Stream 大小。

进阶:用 Collectors 来进行 reduction 操作

java.util.stream.Collectors 类的主要作用就是辅助进行各类有用的 reduction 操作,例如转变输出为 Collection,把 Stream 元素进行归组。

groupingBy/partitioningBy

清单 25. 按照年龄归组
Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
 limit(100).
 collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
 Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
 System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
}

上面的 code,首先生成 100 人的信息,然后按照年龄归组,相同年龄的人放到同一个 list 中,可以看到如下的输出:

Age 0 = 2
Age 1 = 2
Age 5 = 2
Age 8 = 1
Age 9 = 1
Age 11 = 2
……
清单 26. 按照未成年人和成年人归组
Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
 limit(100).
 collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());

输出结果:

     Children number: 23 
     Adult number: 77

在使用条件“年龄小于 18”进行分组后可以看到,不到 18 岁的未成年人是一组,成年人是另外一组。partitioningBy 其实是一种特殊的 groupingBy,它依照条件测试的是否两种结果来构造返回的数据结构,get(true) 和 get(false) 能即为全部的元素对象。

结束语

总之,Stream 的特性可以归纳为:

  • 不是数据结构

  • 它没有内部存储,它只是用操作管道从 source(数据结构、数组、generator function、IO channel)抓取数据。

  • 它也绝不修改自己所封装的底层数据结构的数据。例如 Stream 的 filter 操作会产生一个不包含被过滤元素的新 Stream,而不是从 source 删除那些元素。

  • 所有 Stream 的操作必须以 lambda 表达式为参数

  • 不支持索引访问

  • 你可以请求第一个元素,但无法请求第二个,第三个,或最后一个。不过请参阅下一项。

  • 很容易生成数组或者 List

  • 惰性化

  • 很多 Stream 操作是向后延迟的,一直到它弄清楚了最后需要多少数据才会开始。

  • Intermediate 操作永远是惰性化的。

  • 并行能力

  • 当一个 Stream 是并行化的,就不需要再写多线程代码,所有对它的操作会自动并行进行的。

  • 可以是无限的

    • 集合有固定大小,Stream 则不必。limit(n) 和 findFirst() 这类的 short-circuiting 操作可以对无限的 Stream 进行运算并很快完成。

Add:

流又分为串行流和并行流,串行流就是使用单个线程去处理流,并行流就是使用多个线程处理流

举个例子, 对10000000个Double型数字排序:

public class Java8Test{
    public static void main(String[] args) throws ParseException{
        List<Double> list = new ArrayList<Double>();
        for(int i=0;i<10000000;i++){
            double d = Math.random() * 1000;
            list.add(d);
         }
        long start = System.nanoTime();
        list = list.stream().sequential().sorted().collect(Collectors.toList());
        long end = System.nanoTime();
        list = list.stream().parallel().sorted().collect(Collectors.toList());
        long parTime = TimeUnit.NANOSECONDS.toMillis(System.nanoTime()-end);//得到并行排序所用的时间
        long seqTime = TimeUnit.NANOSECONDS.toMillis(end-start);//得到串行排序所用的时间
        System.out.println("并行时间:"+parTime+";串行时间:"+seqTime);
    }
}

运行结果

并行时间:6527;串行时间:10362

问题一: 既然是并行,那用多少个线程?

  CPU几核就有几个,复合并行最优原理

问题二: 并行流是否使用线程池?

  使用一个有CPU个数的线程池

问题三:这个线程池是否可以自定义,否则可能比串行还慢?

  可以使用自定义线程池

ForkJoinPool forkJoinPool = new ForkJoinPool(<numThreads>)

 

标签:Stream,stream,元素,API,limit,new,操作,Lambda
From: https://www.cnblogs.com/huang2979127746/p/16665269.html

相关文章

  • Stream API的练习题
    题目:找出2011年发生的所有交易,并按交易额排序(从高到低)。交易员都在哪些不同的城市工作过?查找所有来自Cambridge的交易员,并按姓名排序。返回所有交易员的姓名字......
  • Java8Stream流复习和api总结
    构建方式list.stream();Stream.of(list);基础常用APIStream<Number>stream=list.stream();//获取最大值stream.max(比较器);//获取最小值stream.min(比较器);......
  • drf基本视图类APIView
    rest_framework.views.APIViewAPIView是RESTframework提供的所有视图类的基类,继承自Django的view父类APTview与view的不同之处在于:传入到视图方法中的是RESTfr......
  • API 调试工具 All In One
    API调试工具AllInOne接口调试工具ApifoxApifox是API文档、API调试、APIMock、API自动化测试一体化协作平台,定位Postman+Swagger+Mock+JMeter。htt......
  • API优先开发成熟度框架
    API优先开发成熟度框架Photoby马雷克·奥康on不飞溅在与软件开发人员的交谈中,我注意到他们中的大多数都声称在他们的API开发策略中是API优先的。实际上,Postm......
  • Lambda简介
     1、什么是Lambda?Lambda就是一个匿名函数。 2、为什么要使用Lambda?使用Lambda表达式可以对一个接口进行非常简洁的实现(如下图,分别是三种方式实现接口的对比)。 3......
  • Lambda表达式基础语法 ( 一 )
    前言:Lambda作为匿名函数,与普通函数无异,所以与普通函数结构类似:(返回值类型+方法名+参数列表+方法体)因为是匿名函数,所以可以进一步忽略,返回值类型、方法名。  ......
  • Syntegra 的合成数据 API 入门 | Syntegra
    Syntegra的合成数据API入门|SyntegraSyntegra的SyntheticDataAPI的目标是让数据科学家、分析工程师和产品开发人员更容易访问患者级别的医疗保健数据。直接在......
  • cypress安装时npm报错:npm WARN deprecated querystring@0.2.0: The querystring API
    处理方法一:更新npm版本:npminstall-gnpm使用淘宝镜像重新安装依赖:npminstall--registry=https://registry.npm.taobao.orgnpminstall-gcnpm--registry=https......
  • WebAssembly JS API All In One
    WebAssemblyJSAPIAllInOne在js中执行.wasm文件的步骤(()=>{constlog=console.log;log(`\n......