首页 > 其他分享 >第三章图3124

第三章图3124

时间:2023-02-26 23:22:56浏览次数:46  
标签:plt 第三章 学号 sale 3124 import data

import pandas as pd
catering_sale="C:/Users/Lenovo/Desktop/catering_sale.xls"

data=pd.read_excel(catering_sale,index_col=u'日期')
print(data.describe())


import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.figure()
p=data.boxplot(return_type='dict')
x=p['fliers'][0].get_xdata()
y=p['fliers'][0].get_ydata()
y.sort()

for i in range(len(x)):
if i>0:
plt.annotate(y[i],xy=(x[i],y[i]),xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]),y[i]))
else:
plt.annotate(y[i],xy=(x[i],y[i]),xytext=(x[i]+0.08,y[i]))
plt.title('学号3124')
plt.show()

 

 

# 代码3-3 捞起生鱼片的季度销售情况
import pandas as pd
import numpy as np
catering_sale = "C:/Users/Lenovo/Desktop/catering_fish_congee.xls" # 餐饮数据
data = pd.read_excel(catering_sale,names=['date','sale']) # 读取数据,指定“日期”列为索引

bins = [0,500,1000,1500,2000,2500,3000,3500,4000]
labels = ['[0,500)','[500,1000)','[1000,1500)','[1500,2000)',
'[2000,2500)','[2500,3000)','[3000,3500)','[3500,4000)']

data['sale分层'] = pd.cut(data.sale, bins, labels=labels)
print(data)
aggResult = data.groupby(by=['sale分层'])['sale'].agg({"count","count"})
print(aggResult)
pAggResult = round(aggResult/aggResult.sum(), 2, ) * 100
print(pAggResult)

import matplotlib.pyplot as plt
plt.figure(figsize=(10,6)) # 设置图框大小尺寸
pAggResult['count'].plot(kind='bar',width=0.6,fontsize=10) # 绘制频率直方图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.title('学号3124,季度销售额频率分布直方图',fontsize=20)
plt.show()

 

 

import pandas as pd
import matplotlib.pyplot as plt
catering_dish_profit="C:/Users/Lenovo/Desktop/catering_dish_profit(1).xls"
data=pd.read_excel(catering_dish_profit)

x=data['盈利']
labels=data['菜品名']
plt.figure(figsize=(8,6))
plt.pie(x,labels=labels)
plt.rcParams['font.sans-serif']='SimHei'
plt.title('学号3124,菜品销售量分布(饼图)')
plt.axis('equal')
plt.show()

x=data['菜品名']
y=data['盈利']
plt.figure(figsize=(8,4))
plt.bar(x,y)
plt.rcParams['font.sans-serif']='SimHei'
plt.xlabel('菜品')
plt.ylabel('销量')
plt.title('学号3124,菜品销售量分布(条形图)')
plt.show()

 

 

 

 

#部门之间销售金额比较
import pandas as pd
import matplotlib.pyplot as plt
data=pd.read_excel("C:/Users/Lenovo/Desktop/dish_sale(1).xls")
plt.figure(figsize=(8,4))
plt.plot(data['月份'],data['A部门'],color='green',label='A部门',marker='o')
plt.plot(data['月份'],data['B部门'],color='red',label='B部门',marker='s')
plt.plot(data['月份'],data['C部门'],color='skyblue',label='C部门',marker='x')
plt.legend()
plt.ylabel('销售额(万元)')
plt.title('学号3124,部门之间销售金额比较')
plt.show()

data=pd.read_excel("C:/Users/Lenovo/Desktop/dish_sale_b(1).xls")
plt.figure(figsize=(8,4))
plt.plot(data['月份'],data['2012年'],color='green',label='2012年',marker='o')
plt.plot(data['月份'],data['2013年'],color='red',label='2013年',marker='s')
plt.plot(data['月份'],data['2014年'],color='skyblue',label='2014年',marker='x')
plt.legend()
plt.ylabel('销售额(万元)')
plt.show()

 

 

import pandas as pd
print("3124")
catering_sale="C:/Users/Lenovo/Desktop/catering_sale.xls"
data=pd.read_excel(catering_sale,index_col='日期')
data=data[(data['销量']>400)&(data['销量']<5000)]
statistics=data.describe()
statistics.loc['range']=statistics.loc['max']-statistics.loc['min']
statistics.loc['var']=statistics.loc['std']/statistics.loc['mean']
statistics.loc['dis']=statistics.loc['75%']-statistics.loc['25%']
print(statistics)

 

 

import pandas as pd
import matplotlib.pyplot as plt
df_normal=pd.read_excel("C:/Users/Lenovo/Desktop/user.xls")
plt.figure(figsize=(8,4))
plt.plot(df_normal["Date"],df_normal["Eletricity"])
plt.xlabel("日期")
x_major_locator=plt.MultipleLocator(7)
ax=plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
plt.ylabel("每日电量")
plt.title("学号3124,正常用户电量趋势")
plt.rcParams['font.sans-serif']=['SimHei']
plt.show()

df_steal=pd.read_excel("C:/Users/Lenovo/Desktop/Steal user.xls")
plt.figure(figsize=(10,9))
plt.plot(df_steal["Date"],df_steal["Eletricity"])
plt.xlabel("日期")
plt.ylabel("日期")
x_major_locator=plt.MultipleLocator(7)
ax=plt.gca()
ax.xaxis.set_major_locator(x_major_locator)
plt.title("学号3124,窃电用户电量趋势")
plt.rcParams['font.sans-serif']=['SimHei']
plt.show()

 

 

import pandas as pd
dish_profit="C:/Users/Lenovo/Desktop/catering_dish_profit(1).xls"
data=pd.read_excel(dish_profit,index_col='菜品名')
data=data['盈利'].copy()
data.sort_values(ascending=False)
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.figure()
data.plot(kind='bar')
plt.ylabel('盈利(元)')
p=1.0*data.cumsum()/data.sum()
p.plot(color='pink',secondary_y=True,style='-o',linewidth=2)
plt.annotate(format(p[6],'.4%'),xy=(6,p[6]),xytext=(6*0.9,p[6]*0.9),
arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=.2"))
plt.ylabel('盈利(比例)')
plt.title('学号3124')
plt.show()

 

 

#餐饮销量数据相关性分析
import pandas as pd
catering_sale="C:/Users/Lenovo/Desktop/catering_sale_all.xls"
data=pd.read_excel(catering_sale,index_col='日期')
print("3124")
print(data.corr())

print(data.corr()['百合酱蒸凤爪'])

print(data['百合酱蒸凤爪'].corr(data['翡翠蒸香茜饺']))

 

 

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,2*np.pi,50)
y=np.sin(x)
plt.plot(x,y,'bp--')
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt

labels='Frogs','Hogs','Dogs','Logs'
sizes=[15,30,45,10]
colors=['yellowgreen','gold','lightskyblue','lightcoral']
explode=(0,0.1,0,0)

plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct='%1.1f%%',
shadow=True,startangle=90)
plt.axis('equal')
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt
import numpy as np
x=np.random.randn(1000)
plt.hist(x,10)
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
x=np.random.randn(1000)
D=pd.DataFrame([x,x+1]).T
D.plot(kind='box')
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd

x=pd.Series(np.exp(np.arange(20)))
plt.figure(figsize=(8,9))
ax1=plt.subplot(2,1,1)
x.plot(label='原始数据图',legend=True)

ax1=plt.subplot(2,1,2)
x.plot(logy=True,label='对数数据图',legend=True)
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd

error=np.random.randn(10)
y=pd.Series(np.sin(np.arange(10)))
y.plot(yerr=error)
plt.title('学号3124')
plt.show()

 

 

import matplotlib.pyplot as plt
years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
turnovers = [0.5, 9.36, 52, 191, 350, 571, 912, 1027, 1682, 2135, 2684]
plt.figure()
plt.scatter(years, turnovers, c='pink', s=100, label='legend')
plt.xticks(range(2008, 2020, 3))
plt.yticks(range(0, 3200, 800))
plt.xlabel("Year", fontdict={'size': 16})
plt.ylabel("number", fontdict={'size': 16})
plt.title("Title", fontdict={'size': 20})
plt.legend(loc='best')
plt.title('学号3124')
plt.show()

 

标签:plt,第三章,学号,sale,3124,import,data
From: https://www.cnblogs.com/dasddasd/p/17158205.html

相关文章

  • 第三章 半导体器件
    物体根据导电能力的强弱可分为导体、半导体和绝缘体三大类。半征半导体本征半导体是一种纯净的半导体晶体。常用的半导体材料是单晶硅(Si)和单晶锗(Ge)。半导体硅和锗都是4价元......
  • 用python画数据分析第三章的图
    importpandasaspdcatering_sale=(r'D:\sjfx\catering_sale.xls')data=pd.read_excel(catering_sale,index_col='日期')print(data.describe())  importmatplotli......
  • 第一周 python数据分析与挖掘技术实战 第三章
    总结 ............. 图3-1 importpandasaspdcatering_sale='catering_sale.xls'data=pd.read_excel(catering_sale,index_col=u'日期')print(data.descri......
  • python数据分析与挖掘实战第三章
                                         ......
  • 第三章随笔
                                                        ......
  • 第三章 SQL语句
    一、SQL的基本概念SQL是StructuredQueryLanguage的简写,意思是结构化查询语言,是一种在数据库管理系统中查询或对数据库的数据进行更改的语言SQL语言的分类:数据定......
  • 用Python画数据分析第三章的图
    importpandasaspdcatering_sale="D:\数据分析\catering_sale.xls"data=pd.read_excel(catering_sale,index_col=u'日期')print(data.describe())importmatplot......
  • python数据分析与挖掘 第三章 数据探索
                                         ......
  • 第三章 数据探索(绘图)
    1importpandasaspd2catering_sale='E:/anaconda3/jupyterFile/数据分析/catering_sale.xls'#餐饮数据3data=pd.read_excel(catering_sale,index_col='......
  • 第三章 数据链路层
    一、数据链路层概述链路就是从一个结点到相邻节点的一段物理线路,中间没有其他任何的交换节点数据链路是指把实现通信协议的硬件和软件加到链路上,就构成了数据链路数据......