首页 > 其他分享 >27.报表高级分组函数

27.报表高级分组函数

时间:2023-02-26 20:44:59浏览次数:44  
标签:27 20 报表 CLERK 50 id 分组 REP MAN

--group函数复习
hr@ORCLPDB01 2023-02-26 19:55:19> select avg(salary),stddev(salary),count(commission_pct),max(hire_date)
  2  from employees
  3  where job_id like 'SA%';

AVG(SALARY) STDDEV(SALARY) COUNT(COMMISSION_PCT) MAX(HIRE_DATE)
----------- -------------- --------------------- ---------------------------------------------------------------------------
       8900	2030.64754		      35 21-APR-08 12.00.00.000000 AM

Elapsed: 00:00:00.01
--group by复习
hr@ORCLPDB01 2023-02-26 20:09:20> select department_id,job_id,sum(salary),count(employee_id)
  2  from employees
  3  group by department_id,job_id;

DEPARTMENT_ID JOB_ID	 SUM(SALARY) COUNT(EMPLOYEE_ID)
------------- ---------- ----------- ------------------
	   90 AD_VP	       34000		      2
	  100 FI_MGR	       12008		      1
	   80 SA_REP	      243500		     29
	      SA_REP		7000		      1
	   90 AD_PRES	       24000		      1
	   20 MK_REP		6000		      1
	  110 AC_MGR	       12008		      1
	   60 IT_PROG	       28800		      5
	   30 PU_CLERK	       13900		      5
	   80 SA_MAN	       61000		      5
	   50 SH_CLERK	       64300		     20
	   20 MK_MAN	       13000		      1
	   30 PU_MAN	       11000		      1
	   50 ST_CLERK	       55700		     20
	   70 PR_REP	       10000		      1
	  110 AC_ACCOUNT	8300		      1
	   50 ST_MAN	       36400		      5
	  100 FI_ACCOUNT       39600		      5
	   10 AD_ASST		4400		      1
	   40 HR_REP		6500		      1

20 rows selected.

Elapsed: 00:00:00.00
--having复习

1.使用rollup操作符产生汇总结果

--使用rollup或cube通过交叉列可产生高级汇总结果集
--rollup分组产生得结果集包含常规分组和分类汇总
--cube分组结果包括rollup结果和交叉汇总
hr@ORCLPDB01 2023-02-26 20:10:43> select department_id,job_id,sum(salary)
  2  from employees
  3  where department_id < 60
  4  group by rollup(department_id, job_id);

DEPARTMENT_ID JOB_ID	 SUM(SALARY)
------------- ---------- -----------
	   10 AD_ASST		4400
	   10			4400
	   20 MK_MAN	       13000
	   20 MK_REP		6000
	   20		       19000
	   30 PU_MAN	       11000
	   30 PU_CLERK	       13900
	   30		       24900
	   40 HR_REP		6500
	   40			6500
	   50 ST_MAN	       36400
	   50 SH_CLERK	       64300
	   50 ST_CLERK	       55700
	   50		      156400
			      211200

2.使用cube产生交叉汇总结果

hr@ORCLPDB01 2023-02-26 20:15:45> r
  1  select department_id,job_id,sum(salary)
  2  from employees
  3  where department_id < 60
  4* group by cube ( department_id,job_id)

DEPARTMENT_ID JOB_ID	 SUM(SALARY)
------------- ---------- -----------
			      211200
	      HR_REP		6500
	      MK_MAN	       13000
	      MK_REP		6000
	      PU_MAN	       11000
	      ST_MAN	       36400
	      AD_ASST		4400
	      PU_CLERK	       13900
	      SH_CLERK	       64300
	      ST_CLERK	       55700
	   10			4400
	   10 AD_ASST		4400
	   20		       19000
	   20 MK_MAN	       13000
	   20 MK_REP		6000
	   30		       24900
	   30 PU_MAN	       11000
	   30 PU_CLERK	       13900
	   40			6500
	   40 HR_REP		6500
	   50		      156400
	   50 ST_MAN	       36400
	   50 SH_CLERK	       64300
	   50 ST_CLERK	       55700

24 rows selected.

Elapsed: 00:00:00.01

3.使用grouping函数标识rollup或cube产生结果

hr@ORCLPDB01 2023-02-26 20:15:47> select department_id deptid,job_id job,
  2  sum(salary),
  3  grouping(department_id) grp_dept,
  4  grouping(job_id) grp_job
  5  from employees
  6  where department_id < 50
  7  group by rollup(department_id,job_id);

    DEPTID JOB	      SUM(SALARY)   GRP_DEPT	GRP_JOB
---------- ---------- ----------- ---------- ----------
	10 AD_ASST	     4400	   0	      0
	10		     4400	   0	      1
	20 MK_MAN	    13000	   0	      0
	20 MK_REP	     6000	   0	      0
	20		    19000	   0	      1
	30 PU_MAN	    11000	   0	      0
	30 PU_CLERK	    13900	   0	      0
	30		    24900	   0	      1
	40 HR_REP	     6500	   0	      0
	40		     6500	   0	      1
			    54800	   1	      1

11 rows selected.

Elapsed: 00:00:00.00

4.使用grouping sets产生简单结果集

hr@ORCLPDB01 2023-02-26 20:20:48> r
  1  select department_id,job_id,manager_id,avg(salary)
  2  from employees
  3* group by grouping sets ((department_id,job_id),(job_id,manager_id))

DEPARTMENT_ID JOB_ID	 MANAGER_ID AVG(SALARY)
------------- ---------- ---------- -----------
	   90 AD_VP			  17000
	  100 FI_MGR			  12008
	   80 SA_REP		     8396.55172
	      SA_REP			   7000
	   90 AD_PRES			  24000
	   20 MK_REP			   6000
	  110 AC_MGR			  12008
	   60 IT_PROG			   5760
	   30 PU_CLERK			   2780
	   80 SA_MAN			  12200
	   50 SH_CLERK			   3215
	   20 MK_MAN			  13000
	   30 PU_MAN			  11000
	   50 ST_CLERK			   2785
	   70 PR_REP			  10000
	  110 AC_ACCOUNT		   8300
	   50 ST_MAN			   7280
	  100 FI_ACCOUNT		   7920
	   10 AD_ASST			   4400
	   40 HR_REP			   6500
	      ST_CLERK		124	   2925
	      SA_MAN		100	  12200
	      AC_MGR		101	  12008
	      FI_ACCOUNT	108	   7920
	      MK_REP		201	   6000
	      PR_REP		101	  10000
	      AD_VP		100	  17000
	      PU_MAN		100	  11000
	      AD_ASST		101	   4400
	      HR_REP		101	   6500
	      PU_CLERK		114	   2780
	      SH_CLERK		120	   2900
	      ST_CLERK		123	   3000
	      SH_CLERK		122	   3200
	      AC_ACCOUNT	205	   8300
	      ST_CLERK		120	   2625
	      ST_CLERK		121	   2675
	      SA_REP		145	   8500
	      SA_REP		147  7766.66667
	      SA_REP		148	   8650
	      SH_CLERK		121	   3675
	      SH_CLERK		124	   2825
	      IT_PROG		103	   4950
	      FI_MGR		101	  12008
	      ST_MAN		100	   7280
	      SH_CLERK		123	   3475
	      AD_PRES			  24000
	      IT_PROG		102	   9000
	      ST_CLERK		122	   2700
	      SA_REP		146	   8500
	      SA_REP		149  8333.33333
	      MK_MAN		100	  13000

52 rows selected.

5.复合列

--复合列是被作为整体处理得一组列得集合
--使用括号将若干组成复合列在rollup或cube中作为整体进行操作
--在rollup或cube中复合列可避免产生不必要得分组结果
hr@ORCLPDB01 2023-02-26 20:25:25> select department_id,job_id,manager_id
  2  ,sum(salary)
  3  from employees
  4  group by rollup( department_id,(job_id,manager_id));

DEPARTMENT_ID JOB_ID	 MANAGER_ID SUM(SALARY)
------------- ---------- ---------- -----------
	      SA_REP		149	   7000
					   7000
	   10 AD_ASST		101	   4400
	   10				   4400
	   20 MK_MAN		100	  13000
	   20 MK_REP		201	   6000
	   20				  19000
	   30 PU_MAN		100	  11000
	   30 PU_CLERK		114	  13900
	   30				  24900
	   40 HR_REP		101	   6500
	   40				   6500
	   50 ST_MAN		100	  36400
	   50 SH_CLERK		120	  11600
	   50 SH_CLERK		121	  14700
	   50 SH_CLERK		122	  12800
	   50 SH_CLERK		123	  13900
	   50 SH_CLERK		124	  11300
	   50 ST_CLERK		120	  10500
	   50 ST_CLERK		121	  10700
	   50 ST_CLERK		122	  10800
	   50 ST_CLERK		123	  12000
	   50 ST_CLERK		124	  11700
	   50				 156400
	   60 IT_PROG		102	   9000
	   60 IT_PROG		103	  19800
	   60				  28800
	   70 PR_REP		101	  10000
	   70				  10000
	   80 SA_MAN		100	  61000
	   80 SA_REP		145	  51000
	   80 SA_REP		146	  51000
	   80 SA_REP		147	  46600
	   80 SA_REP		148	  51900
	   80 SA_REP		149	  43000
	   80				 304500
	   90 AD_VP		100	  34000
	   90 AD_PRES			  24000
	   90				  58000
	  100 FI_MGR		101	  12008
	  100 FI_ACCOUNT	108	  39600
	  100				  51608
	  110 AC_MGR		101	  12008
	  110 AC_ACCOUNT	205	   8300
	  110				  20308
					 691416

46 rows selected.

Elapsed: 00:00:00.00

6.连接分组集

--连接分组可以产生有用的对分组项得集合
--将各分组集,rollup和cube用逗号连接,Oracle自动在group by子句中将各分组集进行连接
--连接得结果是对各分组生成笛卡尔集
hr@ORCLPDB01 2023-02-26 20:26:15> select department_id,job_id,manager_id,sum(salary)
  2  from employees
  3  group by department_id,
  4  rollup(job_id),
  5  cube(manager_id);

DEPARTMENT_ID JOB_ID	 MANAGER_ID SUM(SALARY)
------------- ---------- ---------- -----------
	      SA_REP		149	   7000
	   10 AD_ASST		101	   4400
	   20 MK_MAN		100	  13000
	   20 MK_REP		201	   6000
	   30 PU_MAN		100	  11000
	   30 PU_CLERK		114	  13900
	   40 HR_REP		101	   6500
	   50 ST_MAN		100	  36400
	   50 SH_CLERK		120	  11600
	   50 SH_CLERK		121	  14700
	   50 SH_CLERK		122	  12800
	   50 SH_CLERK		123	  13900
	   50 SH_CLERK		124	  11300
	   50 ST_CLERK		120	  10500
	   50 ST_CLERK		121	  10700
	   50 ST_CLERK		122	  10800
	   50 ST_CLERK		123	  12000
	   50 ST_CLERK		124	  11700
	   60 IT_PROG		102	   9000
	   60 IT_PROG		103	  19800
	   70 PR_REP		101	  10000
	   80 SA_MAN		100	  61000
	   80 SA_REP		145	  51000
	   80 SA_REP		146	  51000
	   80 SA_REP		147	  46600
	   80 SA_REP		148	  51900
	   80 SA_REP		149	  43000
	   90 AD_VP		100	  34000
	   90 AD_PRES			  24000
	  100 FI_MGR		101	  12008
	  100 FI_ACCOUNT	108	  39600
	  110 AC_MGR		101	  12008
	  110 AC_ACCOUNT	205	   8300
				149	   7000
					   7000
	   10			101	   4400
	   10				   4400
	   20			100	  13000
	   20			201	   6000
	   20				  19000
	   30			100	  11000
	   30			114	  13900
	   30				  24900
	   40			101	   6500
	   40				   6500
	   50			100	  36400
	   50			120	  22100
	   50			121	  25400
	   50			122	  23600
	   50			123	  25900
	   50			124	  23000
	   50				 156400
	   60			102	   9000
	   60			103	  19800
	   60				  28800
	   70			101	  10000
	   70				  10000
	   80			100	  61000
	   80			145	  51000
	   80			146	  51000
	   80			147	  46600
	   80			148	  51900
	   80			149	  43000
	   80				 304500
	   90				  24000
	   90			100	  34000
	   90				  58000
	  100			101	  12008
	  100			108	  39600
	  100				  51608
	  110			101	  12008
	  110			205	   8300
	  110				  20308
	      SA_REP			   7000
	   10 AD_ASST			   4400
	   20 MK_MAN			  13000
	   20 MK_REP			   6000
	   30 PU_MAN			  11000
	   30 PU_CLERK			  13900
	   40 HR_REP			   6500
	   50 ST_MAN			  36400
	   50 SH_CLERK			  64300
	   50 ST_CLERK			  55700
	   60 IT_PROG			  28800
	   70 PR_REP			  10000
	   80 SA_MAN			  61000
	   80 SA_REP			 243500
	   90 AD_VP			  34000
	   90 AD_PRES			  24000
	  100 FI_MGR			  12008
	  100 FI_ACCOUNT		  39600
	  110 AC_MGR			  12008
	  110 AC_ACCOUNT		   8300

93 rows selected.

Elapsed: 00:00:00.00

 

标签:27,20,报表,CLERK,50,id,分组,REP,MAN
From: https://www.cnblogs.com/yuanzijian/p/17157581.html

相关文章