首页 > 其他分享 >大顶堆和小顶堆

大顶堆和小顶堆

时间:2023-02-22 23:46:42浏览次数:25  
标签:大顶 结点 int arr 小顶 节点

1. 什么是堆、大顶堆和小顶堆

堆是一种非线性结构,可以把堆看作一棵二叉树,也可以看作一个数组,即:堆就是利用完全二叉树的结构来维护的一维数组。

堆可以分为大顶堆和小顶堆:
大顶堆:每个结点的值都大于或等于其左右孩子结点的值。
小顶堆:每个结点的值都小于或等于其左右孩子结点的值。
用简单的公式来描述一下堆的定义就是:

  • 大顶堆arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

  • 小顶堆arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

如果是排序,求升序用大顶堆,求降序用小顶堆。一般我们说 topK 问题,就可以用大顶堆或小顶堆来实现,即最大的 K 个:小顶堆/最小的 K 个:大顶堆。

2. 大顶堆的构建过程

大顶堆的构建过程就是从最后一个非叶子结点开始从下往上调整

最后一个非叶子节点怎么找?这里我们用数组表示待排序序列,则最后一个非叶子结点的位置是:数组长度/2-1。假如数组长度为9,则最后一个非叶子结点位置是 9/2-1=3。

  1. 比较当前结点的值和左子树的值,如果当前节点小于左子树的值,就交换当前节点和左子树;
    交换完后要检查左子树是否满足大顶堆的性质,不满足则重新调整子树结构;
  2. 再比较当前结点的值和右子树的值,如果当前节点小于右子树的值,就交换当前节点和右子树;
    交换完后要检查右子树是否满足大顶堆的性质,不满足则重新调整子树结构;
  3. 无需交换调整的时候,则大顶堆构建完成。

画个图理解下,以 [3, 7, 16, 10, 21, 23] 为例:

3. 大顶堆的排序过程

将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值,如此反复执行,便能得到一个有序序列了。

该排序过程可以用下面 4 步概括:
第 1 步:先 n 个元素的无序序列,构建成大顶堆;
第 2 步:将根节点与最后一个元素交换位置,(将最大元素"沉"到数组末端);
第 3 步:交换过后可能不再满足大顶堆的条件,所以需要将剩下的 n-1 个元素重新构建成大顶堆;
第 4 步:重复第 2 步、第 3 步直到整个数组排序完成。

同样以 [3, 7, 16, 10, 21, 23] 为例:

4. 程序实例

#include <stdio.h>
void g1(int *a, int n, int i){
    while (2 * i <= n){
        int j = 2 * i;
        int v = a[j - 1];
        if (j < n && v < a[j]){
            v = a[j];
            j += 1;
        }
        if (a[i - 1] < v){
            int tmp = a[i - 1];
            a[i - 1] = v;
            a[j - 1] = tmp;
            i = j;
        } else{
            break;
        }
    }
}
int g2(int *a, int n, int m){
    int i;
    for (i = n / 2; i > 0; --i)
        g1(a, n, i);
    for (i = 0; i < n && a[i] != m; ++i);
    int j = 0;
    for (++i; i > 0; i /= 2)
        ++j;
    return j;
}
int main(int argc, char* argv[]){
    int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
    int n = sizeof(a) / sizeof(a[0]);
    printf("%d", g2(a, n, 8));
    return 0;
}

g1 函数的作用即为构建大顶堆,代码第29行:当 i = 7 时,a[i] = 8,退出循环,程序执行后控制台输出 j 的值为:4。

标签:大顶,结点,int,arr,小顶,节点
From: https://www.cnblogs.com/crossoverpptx/p/17146423.html

相关文章

  • leetcode 703. 数据流中的第K大元素 小顶堆
    建立一个大小为k的最小堆,堆顶就是第k大的元素数据流中如果有比k大的元素,入堆,重新调整,保持一共k个元素如果比k小直接返回堆顶即可#include<iostream>#include<vecto......
  • 基于四叉树的小顶堆(最小优先队列)
    实现来自Go源码 从下往上调整堆funcsiftupTimer(t[]*timer,iint)bool{ifi>=len(t){returnfalse}when:=t[i].whentmp:=t[i]......
  • 数据结构与算法 -> 大顶堆与小顶堆
    一、大顶堆大顶堆是一种数据结构,它是一颗完全二叉树,并且满足以下性质:每个节点的值都大于或等于它的子节点的值因此,大顶堆的根节点(也称为堆顶)总是最大的元素二、小......
  • 大顶堆小顶堆
    大顶堆/小顶堆转载:https://www.cnblogs.com/remixnameless/p/15906978.html概念堆这种数据结构的应用场景非常多,最经典的莫过于堆排序。堆排序是一种原地的、时间复杂......
  • 九大顶级静态代码分析工具
    https://zhuanlan.zhihu.com/p/448512219C++、DevOps、DevSecOps、敏捷开发、速度和左移策略,这些话题总是说不完道不尽,但这些也都与静态代码分析工具息息相关。这样看......
  • java高并发、高可用、高可靠微服务架构7大顶级设计思维模型
    前段时间一个初创公司的老板带着他们的技术负责人来做技术交流,他们列了一长串问题,有微服务技术选型方面的,有技术难点方面的。这些问题如果不能快速解决,那么就会影响产品......
  • Java PriorityQueue(优先队列)实现大顶堆和小顶堆
    JavaPriorityQueue类是一种队列数据结构实现它与遵循FIFO(先进先出)算法的标准队列不同。//默认为小顶堆PriorityQueue<Integer>minHeap=newPriorityQueue<>(k,(a,b......