一,Kafka 连接器介绍
Kafka 连接器通常用来构建数据管道,一般有两种使用场景:
开始和结束的端点:例如,将 Kafka 中的数据导出到 HBase 数据库,或者把 Oracle 数据库中的数据导入 Kafka 中。
数据传输的中间介质:例如,为了把海量的日志数据存储到 Elasticsearch 中,可以先把这些日志数据传输到 Kafka 中,然后再从 Kafka 中将这些数据导入到 Elasticsearch 中进行存储。Kafka 连接器可以作为数据管道各个阶段的缓冲区,将消费者程序和生产者程序有效地进行解耦。
Kafka 连接器分为两种:
Source 连接器:负责将数据导入 Kafka。
Sink 连接器:负责将数据从 Kafka 系统中导出。
连接器作为 Kafka 的一部分,是随着 Kafka 系统一起发布的,无须独立安装。
二,Kafka 连接器特性
Kafka 连接器包含以下特性:
- 1.是一种处理数据的通用框架,Kafka 连接器指定了一种标准,用来约束 Kafka 与其他系统的集成,简化了 Kafka 连接器的开发、部署和管理过程。
- 2.提供单机模式和分布式模式:Kafka 连接器支持两种模式,既能扩展到支持大型集群,也可以缩小到开发和测试小规模的集群。
- 3.提供 REST 接口:使用 REST API 来提交请求并管理 Kafka 连接器。
- 4.自动管理偏移量:Kafka 连接器可以自动管理偏移量。
- 5.分布式和可扩展:Kafka 连接器建立在现有的组管理协议上,可以通过添加更多的连接器实例来实现水平扩展,实现分布式服务。
- 6.数据流和批量集成:利用 Kafka 已有的能力,Kafka 连接器是桥接数据流和批处理系统的一种理想的解决方案。
三,Kafka 连接器核心概念
- 连接器实例:连接器实例决定了消息数据的流向,即消息从何处复制,以及将复制的消息写入到何处。连接器实例负责 Kafka 与其他系统之间的逻辑处理,连接器实例通常以 JAR 包形式存在,通过实现 Kafka 系统应用接口来完成。
- 任务数:在分布式模式下,每一个连接器实例可以将一个作业切分成多个任务(Task),然后再将任务分发到各个事件线程(Worker)中去执行。任务不会保存当前的状态信息,通常由特定的 Kafka Topic 来保存,例如,指定具体属性 offset.storage.topic 和 status.storage.topic 的值来保存。
- 事件线程:在 Kafka 中,连接器实例和任务数都是逻辑层面的,需要由具体的线程来执行,事件线程包含两种模式–单机模式和分布式模式。
- 转换器:转换器能将字节数据转换成 Kafka 连接器的内部格式,也能将 Kafka 连接器内部存储的数据格式转换成字节数据。
四,使用 Kafka 连接器
1,单机模式
单机模式配置文件
配置单机模式连接器相关参数 config/connect-standalone.properties:
# Kafka 集群 broker 地址
bootstrap.servers=kafka1:9092,kafka2:9092,kafka3:9092
# 指定键值对 JSON 转换器类
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
# 启用键值对转换器
key.converter.schemas.enable=true
value.converter.schemas.enable=true
# 单机模式设置偏移量存储文件
offset.storage.file.filename=/tmp/connect.offsets
# 设置偏移量持久化时间间隔
offset.flush.interval.ms=10000
将数据从文件导入 Kafka Topic 中
编辑 Kafka 连接器 配置文件 config/connect-file-source.properties:
# 设置连接器名字
name=local-file-source
# 指定连接器类
connector.class=FileStreamSource
# 设置最大任务数
tasks.max=1
# 指定读取的文件
file=/tmp/test.txt
# 指定写入 Kafka 的 Topic
topic=connect_test
创建数据源文件并添加数据:
[root@kafka1 ~]# cat /tmp/test.txt
kafka
hadoop
kafka-connect
启动一个单机模式的连接器将数据导入 Kafka Topic 中:
[root@kafka1 kafka]# connect-standalone.sh config/connect-standalone.properties config/connect-file-source.properties
启动消费者程序查看导入到 connect_test 主题中的数据:
[root@kafka1 ~]# kafka-console-consumer.sh --bootstrap-server kafka1:9092 --topic connect_test -from-beginning
{"schema":{"type":"string","optional":false},"payload":"kafka"}
{"schema":{"type":"string","optional":false},"payload":"hadoop"}
{"schema":{"type":"string","optional":false},"payload":"kafka-connect"}
{"schema":
当往文件中追加数据时,消费者可以消费到新的数据:
[root@kafka1 ~]# echo java >> /tmp/test.txt
[root@kafka1 ~]# echo python >> /tmp/test.txt
消费者消费到的新的数据:
{"type":"string","optional":false},"payload":"java"}
{"schema":{"type":"string","optional":false},"payload":"python"}
将 Kafka Topic 中的数据导出到文件
编辑 Kafka 连接器 配置文件 config/connect-file-sink.properties:
# 设置连接器名字
name=local-file-sink
# 指定连接器类
connector.class=FileStreamSink
# 设置最大任务数
tasks.max=1
# 将数据写入的文件
file=/tmp/sink.txt
# 指定导出数据的 Kafka 的 Topic
topics=connect_test
启动一个单机模式的连接器将 Kafka Topic 中的数据导出:
[root@kafka1 kafka]# connect-standalone.sh config/connect-standalone.properties config/connect-file-sink.properties
查看导出文件的内容:
[root@kafka1 ~]# cat /tmp/sink.txt
python
kafka
hadoop
kafka-connect
java
2,分布式模式
在分布式模式下, Kafka 连接器会自动均衡每个事件线程所处理的任务数。允许用户动态地增加或者减少任务,在执行任务、修改配置、提交偏移量时能够得到容错保障。
在分布式模式下,Kafka 连接器会在 Kafka Topic 中存储偏移量,配置和任务状态(单机模式下是保持在本地文件中)。建议手动创建存储偏移量的主题,这样可以按需设置主题的分区数和副本数。
在分布式模式下, Kafka 连接器的配置文件不能使用命令行,需要使用 REST API 来执行创建,修改和销毁 Kafka 连机器的操作。
创建连接器相关主题
# 创建偏移量的的存储主题
kafka-topics.sh --create --bootstrap-server kafka1:9092 --replication-factor 3 --partitions 1 --topic connect-offsets
# 创建配置存储主题
kafka-topics.sh --create --bootstrap-server kafka1:9092 --replication-factor 3 --partitions 6 --topic connect-configs
# 创建任务状态存储主题
kafka-topics.sh --create --bootstrap-server kafka1:9092 --replication-factor 3 --partitions 6 --topic connect-status
分布式模式配置文件
# 设置 Kafka 集群地址
bootstrap.servers=kafka1:9092,kafka2:9092,kafka3:9092
# 设置连接器唯一组名称
group.id=connect-cluster
# 指定键值对 JSON 转换器类
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
# 启用键值对转换器
key.converter.schemas.enable=true
value.converter.schemas.enable=true
# 设置偏移量的的存储主题
offset.storage.topic=connect-offsets
# 设置配置存储主题
config.storage.topic=connect-configs
# 设置任务状态存储主题
status.storage.topic=connect-status
# 设置偏移量持久化时间间隔
offset.flush.interval.ms=10000
启动分布式模式连接器:
[root@kafka1 kafka]# connect-distributed.sh config/connect-distributed.properties
查看连接器版本号信息:
[root@kafka1 ~]# curl http://kafka1:8083
{"version":"2.7.0","commit":"448719dc99a19793","kafka_cluster_id":"wp8iI172SaqLHqNvEh3T-w"}
查看当前已安装的插件:
[root@kafka1 ~]# curl http://kafka1:8083/connector-plugins -s | jq
[
{
"class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"type": "sink",
"version": "2.7.0"
},
{
"class": "org.apache.kafka.connect.file.FileStreamSourceConnector",
"type": "source",
"version": "2.7.0"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorCheckpointConnector",
"type": "source",
"version": "1"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorHeartbeatConnector",
"type": "source",
"version": "1"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorSourceConnector",
"type": "source",
"version": "1"
}
]
连接器 API 接口
由于 Kafka 连接器旨在作为服务运行,因此还提供了用于管理连接器的 REST API。默认情况下,此服务在端口 8083 上运行。以下是当前支持的 API 接口:
GET /connectors #返回活动连接器的列表
POST /connectors #创建一个新的连接器; 请求主体应该是包含字符串name字段和config带有连接器配置参数的对象字段的JSON对象
GET /connectors/{name} #获取有关特定连接器的信息
GET /connectors/{name}/config #获取特定连接器的配置参数
PUT /connectors/{name}/config #更新特定连接器的配置参数
GET /connectors/{name}/status #获取连接器的当前状态,包括连接器是否正在运行,失败,已暂停等,分配给哪个工作者,失败时的错误信息以及所有任务的状态
GET /connectors/{name}/tasks #获取当前为连接器运行的任务列表
GET /connectors/{name}/tasks/{taskid}/status #获取任务的当前状态,包括如果正在运行,失败,暂停等,分配给哪个工作人员,如果失败,则返回错误信息
PUT /connectors/{name}/pause #暂停连接器及其任务,停止消息处理,直到连接器恢复
PUT /connectors/{name}/resume #恢复暂停的连接器(或者,如果连接器未暂停,则不执行任何操作)
POST /connectors/{name}/restart #重新启动连接器(通常是因为失败)
POST /connectors/{name}/tasks/{taskId}/restart #重启个别任务(通常是因为失败)
DELETE /connectors/{name} #删除连接器,停止所有任务并删除其配置
#Kafka Connect还提供了用于获取有关连接器插件信息的REST API:
GET /connector-plugins #返回安装在Kafka Connect集群中的连接器插件列表。请注意,API仅检查处理请求的worker的连接器,这意味着您可能会看到不一致的结果,尤其是在滚动升级期间,如果添加新的连接器jar
PUT /connector-plugins/{connector-type}/config/validate # 根据配置定义验证提供的配置值。此API执行每个配置验证,在验证期间返回建议值和错误消息。
将数据从文件导入到 Kafka Topic 中
通过 REST API 请求创建一个新的连接器实例,将数据导入到 Kafka Topic 中。这里使用的是 Chrome 浏览器上名为 API Tester 的插件
请求 URL:http://kafka1:8083/connectors
请求 Body:
{
"name": "distributed-console-source", #自定义连接器名字
"config":
{
"connector.class": "org.apache.kafka.connect.file.FileStreamSourceConnector",
"tasks.max": "1",
"topic": "distributed_connect_test", #创建的topic
"file": "/tmp/distributed_test.txt" #读取的文件
}
}
查看刚刚创建的连接器:
[root@kafka1 ~]# curl http://kafka1:8083/connectors -s | jq
[
"distributed-console-source"
]
此时开启一个消费者实例可以成功消费到 Kafka Topic 中的数据:
[root@kafka1 ~]# kafka-console-consumer.sh --bootstrap-server kafka1:9092 --topic distributed_connect_test --from-beginning
{"schema":{"type":"string","optional":false},"payload":"distributed_kafka"}
{"schema":{"type":"string","optional":false},"payload":"kafka"}
{"schema":{"type":"string","optional":false},"payload":"hadoop"}
将 Kafka Topic 中的数据导出到文件
通过 REST API 请求创建一个新的连接器实例,将数据从 Kafka Topic 中导出到文件中。
请求 URL: http://kafka1:8083/connectors
请求 Body:
{
"name": "distributed-console-sink",
"config":
{
"connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"tasks.max": "1",
"topics": "distributed_connect_test", #Kafka 中存在的 Topic
"file": "/tmp/distributed_sink.txt" #导出数据到指定文件
}
}
查看目前的连接器:
[root@kafka1 ~]# curl http://kafka1:8083/connectors -s | jq
[
"distributed-console-sink",
"distributed-console-source"
]
查看文件可以看到数据成功从 Kafka Topic 中导出:
[root@kafka1 ~]# cat /tmp/distributed_sink.txt
distributed_kafka
kafka
hadoop
五,开发 Kafka 连接器插件
开发一个完整的 Kafka 连接器插件,分为两部分来实现:
-
编写 Source 连接器。Source 连接器负责将第三方系统的数据导入 Kafka Topic 中。
-
编写 Sink 连接器。Sink 连接器负责将 Kafka Topic 中的数据导出到第三方系统中。
第三方系统可以是关系型数据库(如 MySQL、Oracle 等)、文件系统(如本地文件,分布式文件系统等)、日志系统等。
本实例使用的是 Maven 工程,需要在 pom.xml 文件中引入 Kafka 依赖包:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>0.10.2.1</version>
</dependency>
编写 Source 连接器
编写一个自定义的 Source 连接器,需要实现两个抽象类:
- SourceConnector 类,用来初始化连接器配置和任务数。
- SourceTask 类,用来实现标准输入或者文件读取。
编写输入连接器实例
package book_8;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.kafka.common.config.ConfigDef;
import org.apache.kafka.common.config.ConfigDef.Importance;
import org.apache.kafka.common.config.ConfigDef.Type;
import org.apache.kafka.common.utils.AppInfoParser;
import org.apache.kafka.connect.connector.Task;
import org.apache.kafka.connect.errors.ConnectException;
import org.apache.kafka.connect.source.SourceConnector;
/**
* 输入连接器,用来实现读取配置信息和分配任务等一些初始化工作
* @author 程治玮
* @since 2021/3/16 9:51 下午
*/
public class CustomerFileStreamSourceConnector extends SourceConnector {
// 定义主题配置变量
public static final String TOPIC_CONFIG = "topic";
// 定义文件配置变量
public static final String FILE_CONFIG = "file";
// 实例化一个配置对象
private static final ConfigDef CONFIG_DEF = new ConfigDef().define(FILE_CONFIG, Type.STRING, Importance.HIGH, "Source filename.").define(TOPIC_CONFIG, Type.STRING, Importance.HIGH, "The topic to publish data to");
// 声明文件名变量
private String filename;
// 声明主题变量
private String topic;
/** 获取版本. */
public String version() {
return AppInfoParser.getVersion();
}
/** 开始初始化. */
public void start(Map<String, String> props) {
filename = props.get(FILE_CONFIG);
topic = props.get(TOPIC_CONFIG);
if (topic == null || topic.isEmpty())
throw new ConnectException("FileStreamSourceConnector configuration must include 'topic' setting");
if (topic.contains(","))
throw new ConnectException("FileStreamSourceConnector should only have a single topic when used as a source.");
}
/** 实例化输入类. */
public Class<? extends Task> taskClass() {
return CustomerFileStreamSourceTask.class;
}
/** 获取配置信息. */
public List<Map<String, String>> taskConfigs(int maxTasks) {
ArrayList<Map<String, String>> configs = new ArrayList<>();
Map<String, String> config = new HashMap<>();
if (filename != null)
config.put(FILE_CONFIG, filename);
config.put(TOPIC_CONFIG, topic);
configs.add(config);
return configs;
}
@Override
public void stop() {
}
/** 获取配置对象. */
public ConfigDef config() {
return CONFIG_DEF;
}
}
编写输入连接器任务类
package book_8;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.errors.ConnectException;
import org.apache.kafka.connect.source.SourceRecord;
import org.apache.kafka.connect.source.SourceTask;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 输入连接器任务类,用来实现标准输入或者文件读取
* @author 程治玮
* @since 2021/3/16 9:47 下午
*/
public class CustomerFileStreamSourceTask extends SourceTask {
// 声明一个日志类
private static final Logger LOG = LoggerFactory.getLogger(CustomerFileStreamSourceTask.class);
// 定义文件字段
public static final String FILENAME_FIELD = "filename";
// 定义偏移量字段
public static final String POSITION_FIELD = "position";
// 定义值的值的数据格式
private static final Schema VALUE_SCHEMA = Schema.STRING_SCHEMA;
// 声明文件名
private String filename;
// 声明输入流对象
private InputStream stream;
// 声明读取对象
private BufferedReader reader = null;
// 定义缓冲区大小
private char[] buffer = new char[1024];
// 声明偏移量变量
private int offset = 0;
// 声明主题名
private String topic = null;
// 声明输入流偏移量
private Long streamOffset;
/** 获取版本. */
public String version() {
return new CustomerFileStreamSourceConnector().version();
}
/** 开始执行任务. */
public void start(Map<String, String> props) {
filename = props.get(CustomerFileStreamSourceConnector.FILE_CONFIG);
if (filename == null || filename.isEmpty()) {
stream = System.in;
streamOffset = null;
reader = new BufferedReader(new InputStreamReader(stream, StandardCharsets.UTF_8));
}
topic = props.get(CustomerFileStreamSourceConnector.TOPIC_CONFIG);
if (topic == null)
throw new ConnectException("FileStreamSourceTask config missing topic setting");
}
/** 读取记录并返回数据集. */
public List<SourceRecord> poll() throws InterruptedException {
if (stream == null) {
try {
stream = new FileInputStream(filename);
Map<String, Object> offset = context.offsetStorageReader().offset(Collections.singletonMap(FILENAME_FIELD, filename));
if (offset != null) {
Object lastRecordedOffset = offset.get(POSITION_FIELD);
if (lastRecordedOffset != null && !(lastRecordedOffset instanceof Long))
throw new ConnectException("Offset position is the incorrect type");
if (lastRecordedOffset != null) {
LOG.debug("Found previous offset, trying to skip to file offset {}", lastRecordedOffset);
long skipLeft = (Long) lastRecordedOffset;
while (skipLeft > 0) {
try {
long skipped = stream.skip(skipLeft);
skipLeft -= skipped;
} catch (IOException e) {
LOG.error("Error while trying to seek to previous offset in file: ", e);
throw new ConnectException(e);
}
}
LOG.debug("Skipped to offset {}", lastRecordedOffset);
}
streamOffset = (lastRecordedOffset != null) ? (Long) lastRecordedOffset : 0L;
} else {
streamOffset = 0L;
}
reader = new BufferedReader(new InputStreamReader(stream, StandardCharsets.UTF_8));
LOG.debug("Opened {} for reading", logFilename());
} catch (FileNotFoundException e) {
LOG.warn("Couldn't find file {} for FileStreamSourceTask, sleeping to wait for it to be created", logFilename());
synchronized (this) {
this.wait(1000);
}
return null;
}
}
try {
final BufferedReader readerCopy;
synchronized (this) {
readerCopy = reader;
}
if (readerCopy == null)
return null;
ArrayList<SourceRecord> records = null;
int nread = 0;
while (readerCopy.ready()) {
nread = readerCopy.read(buffer, offset, buffer.length - offset);
LOG.trace("Read {} bytes from {}", nread, logFilename());
if (nread > 0) {
offset += nread;
if (offset == buffer.length) {
char[] newbuf = new char[buffer.length * 2];
System.arraycopy(buffer, 0, newbuf, 0, buffer.length);
buffer = newbuf;
}
String line;
do {
line = extractLine();
if (line != null) {
LOG.trace("Read a line from {}", logFilename());
if (records == null)
records = new ArrayList<>();
records.add(new SourceRecord(offsetKey(filename), offsetValue(streamOffset), topic, null, null, null, VALUE_SCHEMA, line, System.currentTimeMillis()));
}
} while (line != null);
}
}
if (nread <= 0)
synchronized (this) {
this.wait(1000);
}
return records;
} catch (IOException e) {
}
return null;
}
/** 解析一条记录. */
private String extractLine() {
int until = -1, newStart = -1;
for (int i = 0; i < offset; i++) {
if (buffer[i] == '\n') {
until = i;
newStart = i + 1;
break;
} else if (buffer[i] == '\r') {
if (i + 1 >= offset)
return null;
until = i;
newStart = (buffer[i + 1] == '\n') ? i + 2 : i + 1;
break;
}
}
if (until != -1) {
String result = new String(buffer, 0, until);
System.arraycopy(buffer, newStart, buffer, 0, buffer.length - newStart);
offset = offset - newStart;
if (streamOffset != null)
streamOffset += newStart;
return result;
} else {
return null;
}
}
/** 停止任务. */
public void stop() {
LOG.trace("Stopping");
synchronized (this) {
try {
if (stream != null && stream != System.in) {
stream.close();
LOG.trace("Closed input stream");
}
} catch (IOException e) {
LOG.error("Failed to close FileStreamSourceTask stream: ", e);
}
this.notify();
}
}
private Map<String, String> offsetKey(String filename) {
return Collections.singletonMap(FILENAME_FIELD, filename);
}
private Map<String, Long> offsetValue(Long pos) {
return Collections.singletonMap(POSITION_FIELD, pos);
}
/** 判断是标准输入还是读取文件. */
private String logFilename() {
return filename == null ? "stdin" : filename;
}
}
编写 Sink 连接器
在 Kafka 系统中,实现一个自定义的 Sink 连接器,需要实现两个抽象类。
- SinkTask 类:用来实现标准输出或者文件写入。
- SinkConnector 类:用来初始化连接器配置和任务数。
编写输出连接器实例
package book_8;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.kafka.common.config.ConfigDef;
import org.apache.kafka.common.config.ConfigDef.Importance;
import org.apache.kafka.common.config.ConfigDef.Type;
import org.apache.kafka.common.utils.AppInfoParser;
import org.apache.kafka.connect.connector.Task;
import org.apache.kafka.connect.sink.SinkConnector;
/**
* 输出连接器,用来实现读取配置信息和分配任务等一些初始化工作
* @author 程治玮
* @since 2021/3/16 9:56 下午
*/
public class CustomerFileStreamSinkConnector extends SinkConnector {
// 声明文件配置变量
public static final String FILE_CONFIG = "file";
// 实例化一个配置对象
private static final ConfigDef CONFIG_DEF = new ConfigDef().define(FILE_CONFIG, Type.STRING, Importance.HIGH, "Destination filename.");
// 声明一个文件名变量
private String filename;
/** 获取版本信息. */
public String version() {
return AppInfoParser.getVersion();
}
/** 执行初始化. */
public void start(Map<String, String> props) {
filename = props.get(FILE_CONFIG);
}
/** 实例化输出类.*/
public Class<? extends Task> taskClass() {
return CustomerFileStreamSinkTask.class;
}
/** 获取配置信息. */
public List<Map<String, String>> taskConfigs(int maxTasks) {
ArrayList<Map<String, String>> configs = new ArrayList<>();
for (int i = 0; i < maxTasks; i++) {
Map<String, String> config = new HashMap<>();
if (filename != null)
config.put(FILE_CONFIG, filename);
configs.add(config);
}
return configs;
}
public void stop() {
}
/** 获取配置对象. */
public ConfigDef config() {
return CONFIG_DEF;
}
}
编写输出连接器任务类
package book_8;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.nio.charset.StandardCharsets;
import java.util.Collection;
import java.util.Map;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.connect.errors.ConnectException;
import org.apache.kafka.connect.sink.SinkRecord;
import org.apache.kafka.connect.sink.SinkTask;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 输出连接器任务类,用来实现标准输出或者文件写入
* @author 程治玮
* @since 2021/3/16 9:54 下午
*/
public class CustomerFileStreamSinkTask extends SinkTask {
// 声明一个日志对象
private static final Logger LOG = LoggerFactory.getLogger(CustomerFileStreamSinkTask.class);
// 声明一个文件名变量
private String filename;
// 声明一个输出流对象
private PrintStream outputStream;
/** 构造函数. */
public CustomerFileStreamSinkTask() {
}
/** 重载构造函数. */
public CustomerFileStreamSinkTask(PrintStream outputStream) {
filename = null;
this.outputStream = outputStream;
}
/** 获取版本号. */
public String version() {
return new CustomerFileStreamSinkConnector().version();
}
/** 开始执行任务. */
public void start(Map<String, String> props) {
filename = props.get(CustomerFileStreamSinkConnector.FILE_CONFIG);
if (filename == null) {
outputStream = System.out;
} else {
try {
outputStream = new PrintStream(new FileOutputStream(filename, true), false, StandardCharsets.UTF_8.name());
} catch (FileNotFoundException | UnsupportedEncodingException e) {
throw new ConnectException("Couldn't find or create file for FileStreamSinkTask", e);
}
}
}
/** 发送记录给Sink并输出. */
public void put(Collection<SinkRecord> sinkRecords) {
for (SinkRecord record : sinkRecords) {
LOG.trace("Writing line to {}: {}", logFilename(), record.value());
outputStream.println(record.value());
}
}
/** 持久化数据. */
public void flush(Map<TopicPartition, OffsetAndMetadata> offsets) {
LOG.trace("Flushing output stream for {}", logFilename());
outputStream.flush();
}
/** 停止任务. */
public void stop() {
if (outputStream != null && outputStream != System.out)
outputStream.close();
}
/** 判断是标准输出还是文件写入. */
private String logFilename() {
return filename == null ? "stdout" : filename;
}
}
打包与部署
将编写好的连接器代码打成 JAR 包,放在每台 Kafka 的 libs目录下,然后重启 Kafka 集群 和 分布式模式连接器。
启动完成后,可以通过下面命令查看已安装的连接器插件,可以看到两个自定义开发的连接器插件已经部署成功:
[root@kafka1 ~]# curl http://kafka1:8083/connector-plugins -s | jq
[
# 自定义的 Sink 连接器插件
{
"class": "book_8.CustomerFileStreamSinkConnector",
"type": "sink",
"version": "2.7.0"
},
# 自定义的 Source 连接器插件
{
"class": "book_8.CustomerFileStreamSourceConnector",
"type": "source",
"version": "2.7.0"
},
{
"class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"type": "sink",
"version": "2.7.0"
},
{
"class": "org.apache.kafka.connect.file.FileStreamSourceConnector",
"type": "source",
"version": "2.7.0"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorCheckpointConnector",
"type": "source",
"version": "1"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorHeartbeatConnector",
"type": "source",
"version": "1"
},
{
"class": "org.apache.kafka.connect.mirror.MirrorSourceConnector",
"type": "source",
"version": "1"
}
]
将数据从文件导入 Kafka Topic 中
请求 URL:http://kafka1:8083/connectors
请求 Body:
{
"name": "customer-distributed-console-source",
"config":
{
"connector.class": "book_8.CustomerFileStreamSourceConnector",
"tasks.max": "1",
"topic": "customer_distributed_connect_test",
"file": "/tmp/customer_distributed_test.txt"
}
}
查看现在已经创建的连接器:
[root@kafka1 ~]# curl http://kafka1:8083/connectors -s | jq
[
"customer-distributed-console-source",
"distributed-console-sink",
"distributed-console-source"
]
往文件中添加两条数据:
echo kubernetes >> /tmp/customer_distributed_test.txt
echo netty >> /tmp/customer_distributed_test.txt
通过消费者可以消费到刚刚添加的两条数据:
[root@kafka1 ~]# kafka-console-consumer.sh --bootstrap-server kafka1:9092 --topic customer_distributed_connect_test --from-beginning
{"schema":{"type":"string","optional":false},"payload":"kubernetes"}
{"schema":{"type":"string","optional":false},"payload":"netty"}
将 Kafka Topic 中的数据导出到文件
请求 URL:http://kafka1:8083/connectors
请求 Body:
{
"name": "customer-distributed-console-sink",
"config":
{
"connector.class": "book_8.CustomerFileStreamSinkConnector",
"tasks.max": "1",
"topics": "customer_distributed_connect_test",
"file": "/tmp/customer_distributed_sink.txt"
}
}
查看现在已经创建的连接器:
[root@kafka1 ~]# curl http://kafka1:8083/connectors -s | jq
[
"customer-distributed-console-source",
"distributed-console-sink",
"distributed-console-source",
"customer-distributed-console-sink"
]
查看文件,可以看到成功从 Kafka Topic 中将数据导出到文件:
[root@kafka1 ~]# cat /tmp/customer_distributed_sink.txt
kubernetes
netty
转载自:https://blog.csdn.net/cr7258/article/details/114992198
标签:kafka,Connector,connect,连接器,org,import,Kafka From: https://www.cnblogs.com/fantongxue/p/16661248.html