01-定义式
三角函数公式是数学中属于初等函数中的超越函数的一类函数公式。它们的本质是任意角的集合与一个比值的集合的变量之间的映射,通常的三角函数是在平面直角坐标系中定义的。
02-函数公式
03-诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
04-基本公式
4.1 二角和差公式
sin(α±β)=sinα·cosβ±cosα·sinβ
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
4.2 三角和差公式
4.3.1 积化和差公式
4.3.2 和差化积公式
4.4 倍角公式
4.4.1二倍角公式
4.4.2 三倍角公式
4.4.4 四倍角公式
4.4.5 五倍角公式
4.4.6 半角公式
4.5 万能公式
4.6 辅助角公式
4.7 余弦定理
4.8 反三角函数
在数学中,反三角函数(偶尔也称为弧函数,反严密函数或圈度量函数)是三角函数的反函数(具有适当限制的域)。具体而言,它们是正弦、余弦、正切、余切、正割和余割的逆函数,并用于从任何角度的三角比获得角度。
反三角函数主要是三个:
标签:cos,cot,三角函数,公式,汇总,tan,sin From: https://www.cnblogs.com/HanaKoo/p/17138031.html