首页 > 其他分享 >转:【重复图识别】在茫茫图海中,怎么找到相同的它?

转:【重复图识别】在茫茫图海中,怎么找到相同的它?

时间:2023-02-16 10:12:12浏览次数:54  
标签:hash 茫茫 图海中 image print 识别 pixels md5 size

背景

在一些图像相关的项目中,重复图识别是很重要的。就比如热图排行榜(需要识别出重复图);涉及图像深度学习的项目(训练数据需要剔除重复图);图片原创&视频原创(需要识别出重复图)等等。

什么是相同图片

什么是相同图片?相信在不同场景下,这个答案是不一样。有些场景把肉眼看起来一样的图片当作相同图片,有些场景把用滤镜处理过的图片也当作相同图片,而有些场景下只把原图当作相同图片。
这里按照相同程度划分,相同程度从高到低,其实可以分为3个等级:

  • 绝对原图
  • 肉眼相同
  • 抄袭原图

接下来我们逐一详细介绍下这3类。

绝对原图

这个等级,图片相同的程度是最高的,就如下面2张图片,1.png通过直接copy的方式产生的2.png
在这里插入图片描述
它们从图片内容已经无法判断是否是原图,只能从文件的角度识别,一般来说都是直接md5判断2个图片,如下所示:
在这里插入图片描述
它属于用图片文件进行hash处理。

PS:一般来说,所有场景都会先用md5来过滤一边,因为它算法复杂度很低,根本不用理解图片

肉眼相同

这个等级的场景最多,比如图片训练数据去重,热图排行榜等等。
就如下图所示,1.png经过压缩、resize、转码等图片处理的方式产生的3.jpg:
在这里插入图片描述
它们肉眼看起来是相同,但是绝对不是原图,md5无法识别这种情况,只能图像的感知hash处理。感知hash主要有3种(AHash、DHash、PHash、WHash),它们都是用图片内容进行hash处理,只是hash方式不同,下面逐一介绍一波:

AHash

这种感知hash最简单,算法复杂度也最低,它只需要处理2步 预处理 + 二值化

  • 具体流程图如下所示:
    在这里插入图片描述
    它的二值化方式比较简单,只是比较了像素点跟均值,所以效果一般般。
  • python源码如下:
 def ahash(image, hash_size=8):
     image = image.convert("L").resize((hash_size, hash_size), Image.ANTIALIAS)// 1、【预处理】转灰度图,resize
     pixels = numpy.asarray(image)
     avg = np.mean(pixels)//2、计算均值,这里也可以用中值
     diff = pixels > avg // 3、【二值化】大于均值为1,小于等于均值为0
     return diff

DHash

这种感知hash的复杂度也很低,重点是它比AHash的效果好,主要原因它二值化方式考虑上了相邻像素的差值,算法更加鲁棒。(当然这只是一种思想,我们也可以比较固定的2个像素点的大小,每个像素点都有一个与之对应的像素点)。
算法流程图如下(跟AHash差不多,差别在于二值化方式不一样):
在这里插入图片描述

  • python源码如下:
 def dhash(image, hash_size=8):
     image = image.convert("L").resize((hash_size + 1, hash_size), Image.ANTIALIAS)// 1、【预处理】转灰度图,resize
     pixels = numpy.asarray(image)
     diff = pixels[:, 1:] > pixels[:, :-1] //2、【二值化】相邻2个元素对比,右边大于左边为1,右边小于等于左边为0。(也可以改成上下2个元素的对比,或者固定2个元素之间的对比)
     return diff

Phash

Phash是目标效果比较好的,它引入了DCT变换,去除图片中的高频信息,把注意力集中在低频信息中,这是由于人眼对于细节信息不是很敏感。具体算法原理见【PHash】更懂人眼的感知哈希
phash有很多种改版,下面只给出效果最好的一种,它的算法流程图如下:
在这里插入图片描述

  • python 源码如下:
 def phash(image, hash_size=8, highfreq_factor=4):
     import scipy.fftpack
     img_size = hash_size * highfreq_factor
     image = image.convert("L").resize((img_size, img_size), Image.ANTIALIAS)// 1、【预处理】转灰度图,resize
     pixels = numpy.asarray(image)
     dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1) //DCT变换
     dctlowfreq = dct[:hash_size, :hash_size] //2、只留下直流&&低频变量
     med = numpy.median(dctlowfreq) //取中值
     diff = dctlowfreq > med //3、【二值化】大于中值为1,小于等于中值为0
     return diff

WHash

WHash比PHash效果好一丢丢,但是它的复杂度高一些。它是利用小波变换分离低频、高频信息,从而获取到低频信息的。但是它比Phash优势的一点是它还保存了原本图片的空间信息。
具体算法原理见【WHash】更有空间感的感知哈希
WHash流程图如下:
在这里插入图片描述
下面附上源代码,代码很短,也可以先忽略:

  • python源码如下:
def whash(image, hash_size = 8):
    #check
    assert hash_size & (hash_size-1) == 0, "hash_size is not power of 2"
    image_scale = max(2**int(numpy.log2(min(image.size))), hash_size)
    ll_max_level = int(numpy.log2(image_scale))
    level = int(numpy.log2(hash_size))
    assert level <= ll_max_level, "hash_size in a wrong range"
    
    #预处理
    image = image.convert("L").resize((image_scale, image_scale), Image.ANTIALIAS)
    pixels = numpy.asarray(image) / 255.
    
    # 小波变换,haar
    coeffs = pywt.wavedec2(pixels, 'haar', level = ll_max_level)
    # 去掉最低频
    coeffs[0] *= 0
    # 小波逆变换
    dwt_low = pywt.waverec2(coeffs[:level+1], 'haar')
    #二值化,中值
    med = numpy.median(dwt_low)
    diff = dwt_low > med   
    return diff

抄袭原图

这种场景也挺多的,而且其中每个场景都有自己独特的要求。就比如一个视频平台,它的视频原创项目,把加滤镜、换音频、裁剪等方式也判定为相同图片的话,感知hash已经不适用,必须用上图像深度学习了。
一般来说也不需要很强的模型,但是必须针对性的训练特定场景,就比如滤镜,logo,黑边等场景。
滤镜就如下图所示,1.png经过一个滤镜产生了4.png:
在这里插入图片描述
还有一种场景是游戏领域的视频去重,由于游戏背景都一样,只有小小的一块人物或者名字不同,也是需要针对性的加数据训练的。

这里的话,深度学习 MoCo 可能会合适一些。

总结

重复图在图像相关的项目中基本都会用到,不同的场景用不同的算法。

 
 复杂度适用场景
MD5 超级低 绝对原图
感知Hash 肉眼相同
深度学习 特定场景相同
    代码:
#coding=utf-8

import numpy
from PIL import Image 
from PIL import ImageFilter
import pywt
import json
import hashlib
import scipy.fftpack
import numpy as np

def ahash(image, hash_size=8):
    image = image.convert("L").resize((hash_size, hash_size), Image.LANCZOS) #1、【预处理】转灰度图,resize
    pixels = numpy.asarray(image)
    avg = np.mean(pixels) #2、计算均值,这里也可以用中值
    diff = pixels > avg #3、【二值化】大于均值为1,小于等于均值为0
    return diff
 
def dhash(image, hash_size=8):
    image = image.convert("L").resize((hash_size + 1, hash_size), Image.LANCZOS)# 1、【预处理】转灰度图,resize
    pixels = numpy.asarray(image)
    diff = pixels[:, 1:] > pixels[:, :-1] #2、【二值化】相邻2个元素对比,右边大于左边为1,右边小于等于左边为0。(也可以改成上下2个元素的对比,或者固定2个元素之间的对比)
    return diff
 
def phash(image, hash_size=8, highfreq_factor=4):
    img_size = hash_size * highfreq_factor
    image = image.convert("L").resize((img_size, img_size), Image.LANCZOS)# 1、【预处理】转灰度图,resize
    pixels = numpy.asarray(image)
    dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1) #DCT变换
    dctlowfreq = dct[:hash_size, :hash_size] #2、只留下直流&&低频变量
    med = numpy.median(dctlowfreq) #取中值
    diff = dctlowfreq > med #3、【二值化】大于中值为1,小于等于中值为0
    return diff
 
def whash(image, hash_size = 8):
    #check
    assert hash_size & (hash_size-1) == 0, "hash_size is not power of 2"
    image_scale = max(2**int(numpy.log2(min(image.size))), hash_size)
    ll_max_level = int(numpy.log2(image_scale))
    level = int(numpy.log2(hash_size))
    assert level <= ll_max_level, "hash_size in a wrong range"
    
    #预处理
    image = image.convert("L").resize((image_scale, image_scale), Image.LANCZOS)
    pixels = numpy.asarray(image) / 255.
    
    # 小波变换,haar
    coeffs = pywt.wavedec2(pixels, 'haar', level = ll_max_level)
    # 去掉最低频
    coeffs[0] *= 0
    # 小波逆变换
    dwt_low = pywt.waverec2(coeffs[:level+1], 'haar')
    #二值化,中值
    med = numpy.median(dwt_low)
    diff = dwt_low > med   
    return diff

def b2int(mlist):
    res = []
    for i in mlist:
        for j in i:
            if j == True:
                res.append("1")
            else:
                res.append("0")
    return ''.join(res)

def md5(str):
    md = hashlib.md5(str.encode())
    str = md.hexdigest()
    return str

if __name__ == '__main__':
    im1=Image.open('img/gauss/1.jpeg')
    im2=im1.filter(ImageFilter.GaussianBlur(radius = 8 ))
    im3=Image.open('img/gauss/1.jpg')
    im2.show()
    
    print("ahash")
    res1 = md5(b2int(ahash(im1)))
    print("%s" % res1)
    res2 = md5(b2int(ahash(im2)))
    print("%s" % res2)
    res2 = md5(b2int(ahash(im3)))
    print("%s\n" % res2)
    
    print("dhash")
    res1 = md5(b2int(dhash(im1)))
    print("%s" % res1)
    res2 = md5(b2int(dhash(im2)))
    print("%s" % res2)
    res2 = md5(b2int(dhash(im3)))
    print("%s\n" % res2)
    
    print("phash")
    res1 = md5(b2int(phash(im1)))
    print("%s" % res1)
    res2 = md5(b2int(phash(im2)))
    print("%s" % res2)
    res2 = md5(b2int(phash(im3)))
    print("%s\n" % res2)
    
    print("whash")
    res1 = md5(b2int(whash(im1)))
    print("%s" % res1)
    res2 = md5(b2int(whash(im2)))
    print("%s" % res2)
    res2 = md5(b2int(whash(im3)))
    print("%s\n" % res2)

 

效果:

 

 

转自:https://www.cnblogs.com/ERKE/p/14111989.html

标签:hash,茫茫,图海中,image,print,识别,pixels,md5,size
From: https://www.cnblogs.com/xuxiaobo/p/17125742.html

相关文章