文章目录
- 1 pandas的数据结构介绍
- 1.1 Series
- 1.2 DataFrame
- 2 基本功能
- 2.1重要索引
- 2.2 丢弃指定轴上的项
- 2.3 索引、选取和过滤
- 2.4 loc和iloc进行选取
1 pandas的数据结构介绍
1.1 Series
说明:Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签组成。
1)Service字符串表现形式:索引在左边,值在右边。若没有为数据指定索引,则会自动创建一个0-N-1的整数型索引。
import pandas as pd
from pandas import Series,DataFrame
obj=pd.Series([4,7,-5,3])
print(obj)
'''
0 4
1 7
2 -5
3 3
dtype: int64
'''
print(obj.values)
# [ 4 7 -5 3]
print(obj.index)
# 如何索引:RangeIndex(start=0, stop=4, step=1)
#自己创建索引
obj2=pd.Series([4,7,-5,3],index=['a','b','c','d'])
print(obj2)
'''
a 4
b 7
c -5
d 3
dtype: int64
'''
# 通过索引获取数组中的值
print(obj2['a'])
# 4
print(obj2[['a','c','d']])
'''
a 4
c -5
d 3
dtype: int64
'''
2)使用Numpy函数或者类型Numpy的运算,索引值都不会改变
print(obj2[obj2>0])
'''
a 4
b 7
d 3
dtype: int64
'''
print(obj2*2)
'''
a 8
b 14
c -10
d 6
dtype: int64
'''
3)通过字典可以直接创建Service
sdata={'Ohio':35000,'Texas':71000,'Oregon':16000,'Utah':5000}
obj3=pd.Series(sdata)
# print(obj3)
'''
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
'''
在下述例子中,sdata中跟states索引匹配的值会被找出来并放到相应的位置。由于California所对应的sdata值找不到,则结果返回NaN(非数字not a number,用于表示缺失)。而在sdata中的索引值,在states没有,则会被从结果中抹去。
states=['California','Ohio','Oregon','Texas']
obj4=pd.Series(sdata,index=states)
print(obj4)
'''
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
'''
使用pandas的isnull和notnull用于检测缺少数据:
print(pd.isnull(obj4))
'''
California True
Ohio False
Oregon False
Texas False
dtype: bool
'''
4)Service还有一个功能是会根据运算的索引标签自动对齐数据
print(obj3)
print(obj4)
print(obj3+obj4)
############################
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
##########################
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
##########################
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
1.2 DataFrame
说明:DataFrame是一个表格型的数据结构。它含有一组有序的列,每列可以是不同值的类型。DataFrame既有行索引也有列索引。
1)建立DataFrame,直接传入一个由等长列表或Numpy数组组成的字典
data={'state':['Ohio','Ohio','Ohio','Nevada','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002,2003],
'pop':[1.5,1.7,3.6,2.4,2.9,3.2]}
frame=pd.DataFrame(data)
print(frame)
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
5 Nevada 2003 3.2
#对于特别大的数据,使用.head()可以直接取前5行
state year pop
0 Ohio 2000 1.5
1 Ohio 2001 1.7
2 Ohio 2002 3.6
3 Nevada 2001 2.4
4 Nevada 2002 2.9
2)指定列序列,按照指定的顺序进行排列
frame=pd.DataFrame(data,columns=['pop','state','year'])
print(frame)
frame=pd.DataFrame(data,columns=['pop','year'])
print(frame)
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
5 3.2 Nevada 2003
pop year
0 1.5 2000
1 1.7 2001
2 3.6 2002
3 2.4 2001
4 2.9 2002
5 3.2 2003
#若传入的序列在数据中找不到,则返回缺失值NaN
frame=pd.DataFrame(data,columns=['pop','state','year','price'])
print(frame)
pop state year price
0 1.5 Ohio 2000 NaN
1 1.7 Ohio 2001 NaN
2 3.6 Ohio 2002 NaN
3 2.4 Nevada 2001 NaN
4 2.9 Nevada 2002 NaN
5 3.2 Nevada 2003 NaN
3)单独的DaraFrame一列可以看成一个Service
print(frame['state'])
0 Ohio
1 Ohio
2 Ohio
3 Nevada
4 Nevada
5 Nevada
Name: state, dtype: object
4)行也可以通过位置或名称利用loc属性的方式进行获取
print(frame.loc[3])
state Nevada
year 2001
pop 2.4
Name: 3, dtype: object
#获取1,3行的数据
print(frame.loc[[1,3]])
state year pop
1 Ohio 2001 1.7
3 Nevada 2001 2.4
#取行的同时,指定列数据
print(frame.loc[[1,3],['year','state']])
year state
1 2001 Ohio
3 2001 Nevada
5)列可以通过赋值的方式进行修改
frame=pd.DataFrame(data,columns=['state','year','pop','price'])
frame['price']=14500
print(frame)
state year pop price
0 Ohio 2000 1.5 14500
1 Ohio 2001 1.7 14500
2 Ohio 2002 3.6 14500
3 Nevada 2001 2.4 14500
4 Nevada 2002 2.9 14500
5 Nevada 2003 3.2 14500
#自己分配数据
frame['price']=np.array([a,b])
print(frame)
state year pop price
0 Ohio 2000 1.5 a
1 Nevada 2001 1.7 b
6)使用del删除列
#先添加一个新的布尔值列
frame['eastern']=frame.state=='Ohio'
print(frame)
state year pop price eastern
0 Ohio 2000 1.5 NaN True
1 Nevada 2001 1.7 NaN False
del frame['eastern']
print(frame.columns)
Index(['state', 'year', 'pop', 'price'], dtype='object')
7)DataFrame中导入嵌套的字典
说明:嵌套的字典会被认为,外层字典的键作为列,内层的键作为行索引
pop={'Nevada':{2001:2.4,2002:2.9,2000:2.5},
'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame1=pd.DataFrame(pop)
print(frame1)
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2000 2.5 1.5
#进行转置,交行行和列
print((frame1.T))
2001 2002 2000
Nevada 2.4 2.9 2.5
Ohio 1.7 3.6 1.5
2 基本功能
2.1重要索引
1)reindex,创建一个新对象,它的数据符合新的索引
obj=pd.Series([4.5,.2,-5.3,3.6],index=['d','b','a','c'])
print(obj)
# 根据新的索引值进行重排
obj2=obj.reindex(['a','b','c','d'])
print(obj2)
################
d 4.5
b 0.2
a -5.3
c 3.6
dtype: float64
#####################
a -5.3
b 0.2
c 3.6
d 4.5
dtype: float64
2)重新索引会做插值处理,method选项可以完成该目的,“ffill"可以实现向前填充
obj3=pd.Series(['blue','purple','yellow'],index=[0,2,4])
print(obj3)
obj31=obj3.reindex(range(6),method='ffill')
print(obj31)
##########
0 blue
2 purple
4 yellow
######################
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow
3)对于DataFrame:reindex可以修改索引的行,列用columns可以重新索引
frame=pd.DataFrame(np.arange(9).reshape(3,3),index=['a','c','d'],columns=['Ohio','Texas','California'])
print(frame)
####################
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8
frame1=frame.reindex(['a','b','c','d'])
print(frame1)
###################
Ohio Texas California
a 0.0 1.0 2.0
b NaN NaN NaN
c 3.0 4.0 5.0
d 6.0 7.0 8.0
frame1=frame.reindex(columns=['Texas','Utah','California'])
print(frame1)
########################
Texas Utah California
a 1 NaN 2
c 4 NaN 5
d 7 NaN 8
2.2 丢弃指定轴上的项
说明:丢弃某条轴上的一个或多个项,只要有一个索引数组或列表即可。drop方法返回的是一个指定轴上删除了指定值的新对象。不过drop属于就地修改对象,不会返回新的对象
1)首先在Service对象上
obj=pd.Series(np.arange(5.),index=['a','b','c','d','e'])
print(obj)
##################
a 0.0
b 1.0
c 2.0
d 3.0
e 4.0
dtype: float64
new_obj=obj.drop('c')
print(new_obj)
##################################
a 0.0
b 1.0
d 3.0
e 4.0
dtype: float64
print(obj.drop(['d','c']))
######################
a 0.0
b 1.0
e 4.0
dtype: float64
2)对于DataFrame也可以删除任意轴上的索引值
data=pd.DataFrame(np.arange(16).reshape(4,4),index=['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])
# print(data)
# 用标签序列调用drop会从行标签删除值
print(data.drop(['Colorado','Ohio']))
'''
one tow three four
Utah 8 9 10 11
New York 12 13 14 15
'''
print(data.drop(['two'],axis=1))
print(data.drop(['two'],axis='columns'))
'''
one three four
Ohio 0 2 3
Colorado 4 6 7
Utah 8 10 11
New York 12 14 15
'''
2.3 索引、选取和过滤
obj=pd.Series(np.arange(4.),index=['a','b','c','d'])
# print(obj)
print(obj['b'])
print(obj[1])
print(obj[2:4]) #左闭右开
print(obj[['b','a','c']])
print(obj[[1,3]])
print(obj[obj<2])
###############
1.0
1.0
c 2.0
d 3.0
dtype: float64
b 1.0
a 0.0
c 2.0
dtype: float64
b 1.0
d 3.0
dtype: float64
a 0.0
b 1.0
dtype: float64
Process finished with exit code 0
2.4 loc和iloc进行选取
说明:loc使用轴标签,iloc使用整数标签
data=pd.DataFrame(np.arange(16).reshape(4,4),index=['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])
print(data.loc['Colorado',['two','three']])
print(data.iloc[1,[1,2]])
two 5
three 6
Name: Colorado, dtype: int32