首页 > 其他分享 >105. Construct Binary Tree from Preorder and Inorder Traversal[Medium]

105. Construct Binary Tree from Preorder and Inorder Traversal[Medium]

时间:2023-02-08 22:23:51浏览次数:52  
标签:Binary Medium Preorder preorder int index length 数组 inorder

105. Construct Binary Tree from Preorder and Inorder Traversal

Given two integer arrays preorder and inorder where preorder is the preorder traversal of a binary tree and inorder is the inorder traversal of the same tree, construct and return the binary tree.

Constraints:

  • 1 <= preorder.length <= 3000
  • inorder.length == preorder.length
  • -3000 <= preorder[i], inorder[i] <= 3000
  • preorder and inorder consist of unique values.
  • Each value of inorder also appears in preorder.
  • preorder is guaranteed to be the preorder traversal of the tree.
  • inorder is guaranteed to be the inorder traversal of the tree.

Example
image

Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]

思路

  • 先序遍历(中左右)
  • 中序遍历(左中右)
    所以先序数组的第一个值肯定是根节点,那在中序数组中该值位置前的所有值,都应该属于该节点的左子树,后面的都属于右子树
    这样就能得到一个该节点的左子树中序数组,一个该节点的右子树中序数组。
    根据左子树中序数组的长度,就能确定左子树先序数组的长度,然后偏移k个位置赋值,右子树先序数组同理

题解

        TreeNode root = new TreeNode();
        // 找到当前节点值在中序数组中的位置
        int index = 0;
        for (int cur : inorder) {
            index++;
            if (preorder[0] == cur)
                break;
        }
        // 没找到就返回
        if(index == 0)
            return null;
        int[] leftPre = new int[index - 1];
        int[] leftIn = new int[index - 1];
        int[] rightPre = new int[preorder.length - index];
        int[] rightIn = new int[preorder.length - index];
        for (int i = 0; i < leftPre.length; i++) {
            leftPre[i] = preorder[i + 1];
            leftIn[i] = inorder[i];
        }
        for (int i = 0; i < rightPre.length; i++) {
            rightPre[i] = preorder[index + i];
            rightIn[i] = inorder[index + i];
        }
        root.val = preorder[0];
        root.left = buildTree(leftPre, leftIn);
        root.right = buildTree(rightPre, rightIn);

        return root;

标签:Binary,Medium,Preorder,preorder,int,index,length,数组,inorder
From: https://www.cnblogs.com/tanhaoo/p/17103544.html

相关文章