用法:to_categorical(y, num_classes=None, dtype='float32')
将整型的类别标签转为onehot编码。y为int数组,num_classes为标签类别总数,大于max(y)(标签从0开始的)。
返回:如果num_classes=None,返回len(y) * [max(y)+1](维度,m*n表示m行n列矩阵,下同),否则为len(y) * num_classes。
import keras train=keras.utils.to_categorical([1,3]) print(train) """ [[0. 1. 0. 0.] [0. 0. 0. 1.]] """ train=keras.utils.to_categorical([1,3],num_classes=5) print(train) """ [[0. 1. 0. 0. 0.] [0. 0. 0. 1. 0.]] """
将类别标签转化为one-hot编码,MNIST示例(十个类别: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9):
y = np.array([1,4,5,9,3,5,7,0,3,6])
y = keras.utils.to_categorical(y, num_classes=10)
y | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 |
4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
即:
y = [[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]]
标签:num,keras,train,categorical,classes,utils From: https://www.cnblogs.com/yadira/p/16530031.html