首页 > 其他分享 >数据结构——最大堆

数据结构——最大堆

时间:2023-02-01 18:39:01浏览次数:69  
标签:index return 最大 int 元素 数据结构 data public

一、堆

堆(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

堆的实现通过构造二叉堆(binary heap),实为二叉树的一种;由于其应用的普遍性,当不加限定时,均指该数据结构的这种实现。这种数据结构具有以下性质。

  • 任意节点小于(或大于)它的所有后裔,最小元(或最大元)在堆的根上(堆序性)。
  • 堆总是一棵完全树。即除了最底层,其他层的节点都被元素填满,且最底层尽可能地从左到右填入。

将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

 

我们这里讲的是二叉堆。

堆的入队和出队的时间复杂度都是O(log n)

上图就是一个最大堆的事例

下面我们使用数组来构建一个最大堆,在这里为了便于理解,数组索引为0的节点不存放数值,从第二个节点开始存放数据。

当前节点的父节点、左孩子、右孩子的索引就会有如下的关系:

  • 父节点的索引:index/2 (index为当前节点的索引)
  • 左孩子的索引:index*2
  • 右孩子的索引:index*2+1

如果从数组的第一个节点开始存放数据的话,当前节点的父节点、左孩子、右孩子的索引就会有如下的关系:

  • 父节点的索引:(index-1)/2 (index为当前节点的索引)
  • 左孩子的索引:index*2+1
  • 右孩子的索引:index*2+2

二、优先队列

普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出 (first in, largest out)的行为特征。通常采用堆数据结构来实现。

三、最大堆的基础架构

3.1 动态数组的底层实现

public class Array<E> {

    private E[] data;

    private int size;

    public Array(){
        this(10);
    }

    public Array(int capacity){
        this.data = (E[]) new Object[capacity];
        this.size = 0;
    }

    public Array(E[] arr){
        this.data = (E[]) new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        this.size = arr.length;
    }

    /**
     * 获取数组中元素个数
     * @return
     */
    public int getSize(){
        return size;
    }

    /**
     * 获取数组容量
     * @return
     */
    public int getCapacity(){
        return data.length;
    }

    /**
     * 返回数组是否为空
     * @return
     */
    public boolean isEmpty(){
        return size == 0;
    }

    /**
     * 数组尾部新增元素
     * @param e
     */
    public void addLast(E e){
        add(size, e);
    }

    /**
     * 数组头部新增元素
     * @param e
     */
    public void addFirst(E e){
        add(0, e);
    }

    /**
     * 在指定位置插入元素
     * @param index
     * @param e
     */
    public void add(int index, E e){
        if(index < 0 || index > size){
            throw new IllegalArgumentException("AddLast failed. require index >=0 and index <= size");
        }
        if(size == data.length){
            //扩容
            resize(2 * data.length);
        }

        for(int i = size - 1; i >= index; i --){
            data[i + 1] = data[i];
        }
        data[index] = e;
        size ++;
    }

    /**
     * 数组扩容
     * @param newCapacity
     */
    private void resize(int newCapacity){
        E[] newData = (E[])new Object[newCapacity];
        for (int i = 0; i < size; i++) {
            newData[i] = data[i];
        }
        data = newData;
    }

    /**
     * 获取指定索引位置的值
     * @param index
     * @return
     */
    public E get(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Get failed. index is illegal.");
        }
        return data[index];
    }

    /**
     * 替换指定索引位置的值
     * @param index
     * @param e
     */
    public void set(int index, E e){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Set failed. index is illegal.");
        }
        data[index] = e;
    }

    /**
     * 数组是否包含元素e
     * @param e
     * @return
     */
    public boolean contains(E e){
        for (int i = 0; i < size; i++) {
            if(data[i].equals(e)){
                return true;
            }
        }
        return false;
    }

    /**
     * 查找数组中元素e所在的索引,不存在元素e,返回-1
     * @param e
     * @return
     */
    public int find(E e){
        for (int i = 0; i < size; i++) {
            if(data[i].equals(e)){
                return i;
            }
        }
        return -1;
    }

    /**
     * 删除数组中index位置的元素, 并返回删除的元素
     * @param index
     * @return
     */
    public E remove(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Remove failed. index is illegal.");
        }
        E ret = data[index];
        for (int i = index; i < size - 1; i++) {
            data[i] = data[i + 1];
        }
        size --;
        data[size] = null;
        if(size == data.length / 4 && data.length / 2 != 0){
            //当数组长度缩小为原数组的4分之一的时候才进行数组的缩容,
            //缩小为原数组的2分之一,预留空间,防止有数据添加导致扩容浪费性能
            resize(data.length / 2);
        }
        return ret;
    }

    /**
     * 删除数组中第一个元素
     * @return
     */
    public E removeFirst(){
        return remove(0);
    }

    /**
     * 删除数组中最后一个元素
     * @return
     */
    public E removeLast(){
        return remove(size - 1);
    }

    /**
     * 从数组中删除元素e
     * @param e
     */
    public void removeElement(E e){
        int index = find(e);
        if(index != -1){
            remove(index);
        }
    }

    /**
     * 数组索引元素交换
     * @param i
     * @param j
     */
    public void swap(int i, int j){
        if(i < 0 || i >= size || j < 0 || j >= size){
            throw new IllegalArgumentException("Index is illegal.");
        }
        E temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

    @Override
    public String toString(){
        StringBuilder sb = new StringBuilder();
        sb.append(String.format("Array: size = %d, capacity = %d\n",size,data.length));
        sb.append("[");
        for (int i = 0; i < size; i++) {
            sb.append(data[i]);
            if(i != size - 1){
                sb.append(", ");
            }
        }
        sb.append("]");
        return sb.toString();
    }
}

3.2 最大堆使用动态数组作为底层实现

/**
 * @Author: huangyibo
 * @Date: 2022/2/17 22:54
 * @Description: 最大堆 完全二叉树,父亲节点大于等于孩子节点,采用数组表示
 */
public class MaxHeap<E extends Comparable<E>> {

    //这里使用数组来实现
    private Array<E> data;

    public MaxHeap(){
        data = new Array<>();
    }

    public MaxHeap(int capacity){
        data = new Array<>(capacity);
    }

    /**
     * 返回堆中的元素个数
     * @return
     */
    public int getSize(){
        return data.getSize();
    }

    /**
     *堆是否为空
     * @return
     */
    public boolean isEmpty(){
        return data.isEmpty();
    }

    /**
     * 返回完全二叉树的数组表示中,一个索引所表示的元素的父亲节点的索引
     * @param index
     * @return
     */
    private int parent(int index){
        if(index == 0){
            throw new IllegalArgumentException("index-0 doesn't have parent.");
        }
        return (index - 1) / 2;
    }

    /**
     * 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
     * @return
     */
    private int leftChild(int index){
        return index * 2 + 1;
    }

    /**
     * 回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
     * @param index
     * @return
     */
    private int rightChild(int index){
        return index * 2 + 2;
    }
}

3.3 往堆中添加元素

  • 在向堆中添加元素时,除了要维持完全二叉树的结构,还要注意堆的约束条件:根节点的值要大于左右子树的值。

在这里因为我们使用数组来实现的堆,所以添加元素时,我们可以先将元素添加到数组的末尾,然后循环的与父节点比较大小,比父节点大就与父节点交换位置,之后就继续与新的父节点比较大小,直到小于等于父节点。

  • 如图所示,我们要在这个堆中添加一个元素36。

  • 先将元素添加到数组的末尾。

  • 然后通过当前的索引计算出父节点的索引,通过索引得到父节点的值16,通过比较新添加的节点比其父节点大,所以将新添加的值与父节点交换在数组中的位置。之后再与新的父节点41比较,36<41,结束操作。

添加元素的代码实现

/**
 * 向堆中添加元素
 * @param e
 */
public void add(E e){
	data.addLast(e);
	//当前元素在数组中的索引为 data.getSize() - 1
	//比较当前元素和其父亲节点的元素,大于父亲节点元素则交换位置
	siftUp(data.getSize() - 1);
}

/**
 * k索引元素比父节点元素大,则交换位置,不断循环
 * @param k
 */
private void siftUp(int k){
	//k > 0 并且k索引元素比父节点元素大,则交换位置,不断循环
	while (k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0){
		data.swap(parent(k), k);
		k = parent(k);
	}
}

3.4 删除堆顶元素

删除堆顶元素要注意维持堆的特殊性质。这里举个例子。

  • 要将这个堆中删除最大值,也就是堆顶元素62,先将62取出。

  • 将堆顶元素和堆的最后一个元素互换,也就是数组的首尾元素互换。

  • 删除最后一个元素,也就是堆中的最大值

  • 将当前的堆顶元素16的左右孩子41、30进行比较,找出最大的一个41,再与根节点16进行比较,左孩子41比根节点16大,所以将根节点与其左孩子互换,如图所示。

  • 重复上面的操作,直到当前节点的值大于其左右子树。过程如下所示。

删除堆顶元素的代码实现

/**
 * 查看堆中最大元素
 * @return
 */
public E findMax(){
	if(data.getSize() == 0){
		throw new IllegalArgumentException("Can not findMax when heap is empty.");
	}
	return data.get(0);
}

/**
 * 取出堆中最大元素
 * @return
 */
public E extractMax(){
	//获取堆中最大元素
	E ret = findMax();

	//堆中最开始的元素和最后元素交换位置
	data.swap(0,data.getSize() - 1);

	//删除堆中最后一个元素
	data.removeLast();
	//0索引元素比左右孩子节点元素小,则交换位置,不断循环
	siftDown(0);
	return ret;
}

/**
 * k索引元素比左右孩子节点元素小,则交换位置,不断循环
 * @param k
 */
private void siftDown(int k){

	while (leftChild(k) < data.getSize()){
		//获取k索引的左孩子的索引
		int j = leftChild(k);

		//j + 1 < data.getSize()
		if(j + 1 < data.getSize() &&
				//如果右孩子比左孩子大
				data.get(j + 1).compareTo(data.get(j)) > 0){
			//最大孩子的索引赋值给j
			j = rightChild(k);
		}

		//此时data[j]是leftChild和rightChild中的最大值
		if(data.get(k).compareTo(data.get(j)) >= 0){
			//如果父亲节点大于等于左右孩子节点,跳出循环
			break;
		}

		//如果父亲节点小于左右孩子节点(中的最大值),交换索引的值
		data.swap(k, j);

		//交换完成之后,将j赋值给K,重新进入循环
		k = j;
	}
}

3.5 Replace操作

Replace是指将堆中的最大元素取出,替换另一个进去。

 

自然地我们会想到使用之前的extractMax()和add()来实现,但是这样的时间复杂度将会是两次的O(log n),因此我们可以直接将堆顶元素替换以后执行sift down操作,这样时间复杂度就只有O(log n)。

Replace代码实现

/**
 * 取出堆中最大元素,并且替换成元素e
 * @param e
 * @return
 */
public E replace(E e){
	//获取堆中的最大值
	E ret = findMax();
	//用新添加的元素替换最大的元素
	data.set(0, e);
	//0索引元素比左右孩子节点元素小,则交换位置,不断循环
	siftDown(0);
	return ret;
}

3.6 Heapify操作

Heapify是指将数组转化为堆。

 

这里我们先将数组直接看成是一个完全二叉树,然后找到这棵二叉树的最后一个非叶子节点的节点,也就是该树的最后一个节点的父节点。然后从这个节点开始到根节点结束,执行sift down操作。这样的时间复杂度为O(n)。

Heapify代码实现

/**
 * 将任意数组整理成堆的形状
 * @param arr
 */
public MaxHeap(E[] arr){
	data = new Array<>(arr);
	//从最后一个叶子节点的父节点开始进行siftDown操作,不断循环
	for(int i = parent(arr.length - 1); i >= 0; i --){
		siftDown(i);
	}
}

至此就完成了整个基于动态数组实现的最大堆的全部代码,完整代码如下 :

动态数组底层实现

/**
 * @Author: huangyibo
 * @Date: 2021/12/25 17:29
 * @Description: 数组实现
 */
 
public class Array<E> {

    private E[] data;

    private int size;

    public Array(){
        this(10);
    }

    public Array(int capacity){
        this.data = (E[]) new Object[capacity];
        this.size = 0;
    }

    public Array(E[] arr){
        this.data = (E[]) new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        this.size = arr.length;
    }

    /**
     * 获取数组中元素个数
     * @return
     */
    public int getSize(){
        return size;
    }

    /**
     * 获取数组容量
     * @return
     */
    public int getCapacity(){
        return data.length;
    }

    /**
     * 返回数组是否为空
     * @return
     */
    public boolean isEmpty(){
        return size == 0;
    }

    /**
     * 数组尾部新增元素
     * @param e
     */
    public void addLast(E e){
        add(size, e);
    }

    /**
     * 数组头部新增元素
     * @param e
     */
    public void addFirst(E e){
        add(0, e);
    }

    /**
     * 在指定位置插入元素
     * @param index
     * @param e
     */
    public void add(int index, E e){
        if(index < 0 || index > size){
            throw new IllegalArgumentException("AddLast failed. require index >=0 and index <= size");
        }
        if(size == data.length){
            //扩容
            resize(2 * data.length);
        }

        for(int i = size - 1; i >= index; i --){
            data[i + 1] = data[i];
        }
        data[index] = e;
        size ++;
    }

    /**
     * 数组扩容
     * @param newCapacity
     */
    private void resize(int newCapacity){
        E[] newData = (E[])new Object[newCapacity];
        for (int i = 0; i < size; i++) {
            newData[i] = data[i];
        }
        data = newData;
    }

    /**
     * 获取指定索引位置的值
     * @param index
     * @return
     */
    public E get(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Get failed. index is illegal.");
        }
        return data[index];
    }

    /**
     * 替换指定索引位置的值
     * @param index
     * @param e
     */
    public void set(int index, E e){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Set failed. index is illegal.");
        }
        data[index] = e;
    }

    /**
     * 数组是否包含元素e
     * @param e
     * @return
     */
    public boolean contains(E e){
        for (int i = 0; i < size; i++) {
            if(data[i].equals(e)){
                return true;
            }
        }
        return false;
    }

    /**
     * 查找数组中元素e所在的索引,不存在元素e,返回-1
     * @param e
     * @return
     */
    public int find(E e){
        for (int i = 0; i < size; i++) {
            if(data[i].equals(e)){
                return i;
            }
        }
        return -1;
    }

    /**
     * 删除数组中index位置的元素, 并返回删除的元素
     * @param index
     * @return
     */
    public E remove(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Remove failed. index is illegal.");
        }
        E ret = data[index];
        for (int i = index; i < size - 1; i++) {
            data[i] = data[i + 1];
        }
        size --;
        data[size] = null;
        if(size == data.length / 4 && data.length / 2 != 0){
            //当数组长度缩小为原数组的4分之一的时候才进行数组的缩容,
            //缩小为原数组的2分之一,预留空间,防止有数据添加导致扩容浪费性能
            resize(data.length / 2);
        }
        return ret;
    }

    /**
     * 删除数组中第一个元素
     * @return
     */
    public E removeFirst(){
        return remove(0);
    }

    /**
     * 删除数组中最后一个元素
     * @return
     */
    public E removeLast(){
        return remove(size - 1);
    }

    /**
     * 从数组中删除元素e
     * @param e
     */
    public void removeElement(E e){
        int index = find(e);
        if(index != -1){
            remove(index);
        }
    }

    /**
     * 数组索引元素交换
     * @param i
     * @param j
     */
    public void swap(int i, int j){
        if(i < 0 || i >= size || j < 0 || j >= size){
            throw new IllegalArgumentException("Index is illegal.");
        }
        E temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

    @Override
    public String toString(){
        StringBuilder sb = new StringBuilder();
        sb.append(String.format("Array: size = %d, capacity = %d\n",size,data.length));
        sb.append("[");
        for (int i = 0; i < size; i++) {
            sb.append(data[i]);
            if(i != size - 1){
                sb.append(", ");
            }
        }
        sb.append("]");
        return sb.toString();
    }
}

基于动态数组底层实现的最大堆实现

/**
 * @Author: huangyibo
 * @Date: 2022/2/17 22:54
 * @Description: 最大堆 完全二叉树,父亲节点大于等于孩子节点,采用数组表示
 */
 
public class MaxHeap<E extends Comparable<E>> {

    //这里使用数组来实现
    private Array<E> data;

    public MaxHeap(){
        data = new Array<>();
    }

    public MaxHeap(int capacity){
        data = new Array<>(capacity);
    }

    /**
     * 将任意数组整理成堆的形状
     * @param arr
     */
    public MaxHeap(E[] arr){
        data = new Array<>(arr);
        //从最后一个叶子节点的父节点开始进行siftDown操作,不断循环
        for(int i = parent(arr.length - 1); i >= 0; i --){
            siftDown(i);
        }
    }

    /**
     * 返回堆中的元素个数
     * @return
     */
    public int getSize(){
        return data.getSize();
    }

    /**
     *堆是否为空
     * @return
     */
    public boolean isEmpty(){
        return data.isEmpty();
    }

    /**
     * 返回完全二叉树的数组表示中,一个索引所表示的元素的父亲节点的索引
     * @param index
     * @return
     */
    private int parent(int index){
        if(index == 0){
            throw new IllegalArgumentException("index-0 doesn't have parent.");
        }
        return (index - 1) / 2;
    }

    /**
     * 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
     * @return
     */
    private int leftChild(int index){
        return index * 2 + 1;
    }

    /**
     * 回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
     * @param index
     * @return
     */
    private int rightChild(int index){
        return index * 2 + 2;
    }

    /**
     * 向堆中添加元素
     * @param e
     */
    public void add(E e){
        data.addLast(e);
        //当前元素在数组中的索引为 data.getSize() - 1
        //比较当前元素和其父亲节点的元素,大于父亲节点元素则交换位置
        siftUp(data.getSize() - 1);
    }

    /**
     * k索引元素比父节点元素大,则交换位置,不断循环
     * @param k
     */
    private void siftUp(int k){
        //k > 0 并且k索引元素比父节点元素大,则交换位置,不断循环
        while (k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0){
            data.swap(parent(k), k);
            k = parent(k);
        }
    }

    /**
     * 查看堆中最大元素
     * @return
     */
    public E findMax(){
        if(data.getSize() == 0){
            throw new IllegalArgumentException("Can not findMax when heap is empty.");
        }
        return data.get(0);
    }

    /**
     * 取出堆中最大元素
     * @return
     */
    public E extractMax(){
        //获取堆中最大元素
        E ret = findMax();

        //堆中最开始的元素和最后元素交换位置
        data.swap(0,data.getSize() - 1);

        //删除堆中最后一个元素
        data.removeLast();
        //0索引元素比左右孩子节点元素小,则交换位置,不断循环
        siftDown(0);
        return ret;
    }

    /**
     * k索引元素比左右孩子节点元素小,则交换位置,不断循环
     * @param k
     */
    private void siftDown(int k){

        while (leftChild(k) < data.getSize()){
            //获取k索引的左孩子的索引
            int j = leftChild(k);

            //j + 1 < data.getSize()
            if(j + 1 < data.getSize() &&
                    //如果右孩子比左孩子大
                    data.get(j + 1).compareTo(data.get(j)) > 0){
                //最大孩子的索引赋值给j
                j = rightChild(k);
            }

            //此时data[j]是leftChild和rightChild中的最大值
            if(data.get(k).compareTo(data.get(j)) >= 0){
                //如果父亲节点大于等于左右孩子节点,跳出循环
                break;
            }

            //如果父亲节点小于左右孩子节点(中的最大值),交换索引的值
            data.swap(k, j);

            //交换完成之后,将j赋值给K,重新进入循环
            k = j;
        }
    }

    /**
     * 取出堆中最大元素,并且替换成元素e
     * @param e
     * @return
     */
    public E replace(E e){
        //获取堆中的最大值
        E ret = findMax();
        //用新添加的元素替换最大的元素
        data.set(0, e);
        //0索引元素比左右孩子节点元素小,则交换位置,不断循环
        siftDown(0);
        return ret;
    }
}

参考: https://www.cnblogs.com/youch/p/10341675.html

https://blog.csdn.net/love905661433/article/details/82989404

https://blog.csdn.net/weixin_39084521/article/details/90322548

标签:index,return,最大,int,元素,数据结构,data,public
From: https://blog.51cto.com/u_14014612/6031746

相关文章

  • 数据结构——优先队列
    一、优先队列优先队列顾名思义,就是优先权最大的排在队列的头部,而优先权的判断是根据对象的compare方法比较获取的,保证根节点的优先级一定比子节点的优先级大。所以放入到优......
  • 数据结构——线段树
    一、概述线段树是一种二叉搜索树,其存储的是一个区间的信息,每个结点以结构体的形式去存储,每个结构体包含三个元素:区间左端点、区间右端点、该区间要维护的信息(视实际情况而......
  • 数据结构——Trie
    一、Trie字典树在计算机科学中,trie,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位......
  • 数据结构——并查集
    一、并查集的概念在计算机科学中,并查集是一种树形的数据结构,用于处理不交集的合并(union)及查询(find)问题。 并查集可用于查询网络中两个节点的状态,这里的网络是......
  • 数据结构——AVL树
    一、平衡二叉树平衡二叉树也称平衡二叉搜索树(Self-balancingbinarysearchtree)是一种结构平衡的二分搜索树。 平衡二叉树由二分搜索树发展而来,在二分搜索树的基础上......
  • 数据结构——红黑树
    前言红黑树是计算机科学内比较常用的一种数据结构,它使得对数据的搜索,插入和删除操作都能保持在O(㏒n)的时间复杂度。然而,相比于一般的数据结构,红黑树的实现的难度有所增加......
  • 数据结构——Hash表
    前言Hash表也叫散列表,是一种线性数据结构。在一般情况下,可以用o(1)的时间复杂度进行数据的增删改查。在Java开发语言中,HashMap的底层就是一个散列表。一、什么是Hash表Ha......
  • 数据结构——动态数组
    简介数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。因此可以通过索引(Index)计算出某个元素的地址。 数组特点索引(即下标)......
  • 数据结构——队列
    简介队列是是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。 队列是一种先进先出的线性表,简称FIFO允许插入的以端称为队尾,允许删除的一端被称为队头。入......
  • 数据结构——栈
    简介限定仅在表尾进行插入和删除操作的线性表。允许插入和删除的一端成为栈顶,另一端成为栈低,不含任何元素的栈成为空栈,栈又称为先进先出的线性表,简称LIFO结构。 栈的插......