一、Zookeeper原理详解
1、Zookeeper是什么
Zookeeper 分布式服务框架是Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等
Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储, Zookeeper 作用主要是用来维护和监控存储的数据的状态变化,通过监控这些数据状态的变化,从而达到基于数据的集群管理
简单的说,zookeeper=文件系统+通知机制。
2、Zookeeer工作原理
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和 命名服务等。Zookeeper是hadoop的一个子项目,其发展历程无需赘述。在分布式应用中,由于工程师不能很好地使用锁机制,以及基于消息的协调 机制不适合在某些应用中使用,因此需要有一种可靠的、可扩展的、分布式的、可配置的协调机制来统一系统的状态
二、Zookeeper中的元素介绍
1、znode节点
有四种类型的znode:
1、PERSISTENT-持久化目录节点
客户端与zookeeper断开连接后,该节点依旧存在
2、 PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号
3、EPHEMERAL-临时目录节点
客户端与zookeeper断开连接后,该节点被删除
4、EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号
2、NameService 命名服务
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现
1
这个主要是作为分布式命名服务,通过调用zk的create node api,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。
3、configuration 配置管理
现在把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
4、GroupMembers 集群管理
所谓集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道了。新机器加入也是类似,所有机器收到通知:新兄弟目录加入,highcount又有了。
对于第二点,所有机器创建临时顺序编号目录节点,通过master选举算法选举出来。
1、Zookeeper的角色
1、Leader
它是Zookeeper集群工作的核心,也是事务性请求(写操作)的唯一调度和处理者,它保证集群事务处理的顺序性,同时负责进行投票的发起和决议,以及更新系统状态。
2、Follower
它负责处理客户端的非事务(读操作)请求,如果接收到客户端发来的事务性请求,则会转发给Leader,让Leader进行处理,同时还负责在Leader选举过程中参与投票。
3、Observer
它负责观察Zookeeper集群的最新状态的变化,并且将这些状态进行同步。对于非事务性请求可以进行独立处理;对于事务性请求,则会转发给Leader服务器进行处理。它不会参与任何形式的投票,只提供非事务性的服务,通常用于在不影响集群事务处理能力的前提下,提升集群的非事务处理能力(提高集群读的能力,也降低了集群选主的复杂程度)。
4、客户端(client),请求发起方
三、Zab协议
是为分布式协调服务Zookeeper专门设计的一种 支持崩溃恢复 的 原子广播协议 ,是Zookeeper保证数据一致性的核心算法。Zab借鉴了Paxos算法,但又不像Paxos那样,是一种通用的分布式一致性算法。它是特别为Zookeeper设计的支持崩溃恢复的原子广播协议。
Zookeeper的核心是原子广播,这个机制保证了各个server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式和广播模式。
Zab协议内容
Zab 协议包括两种基本的模式:崩溃恢复 和 消息广播
协议过程
当整个集群启动过程中,或者当 Leader 服务器出现网络中弄断、崩溃退出或重启等异常时,Zab协议就会 进入崩溃恢复模式,选举产生新的Leader。
当选举产生了新的 Leader,同时集群中有过半的机器与该 Leader 服务器完成了状态同步(即数据同步)之后,Zab协议就会退出崩溃恢复模式,进入消息广播模式。
这时,如果有一台遵守Zab协议的服务器加入集群,因为此时集群中已经存在一个Leader服务器在广播消息,那么该新加入的服务器自动进入恢复模式:找到Leader服务器,并且完成数据同步。同步完成后,作为新的Follower一起参与到消息广播流程中。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识 leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
Zab协议的核心:定义了事务请求的处理方式
1)所有的事务请求必须由一个全局唯一的服务器来协调处理,这样的服务器被叫做 Leader服务器。其他剩余的服务器则是 Follower服务器。
2)Leader服务器 负责将一个客户端事务请求,转换成一个 事务Proposal,并将该 Proposal 分发给集群中所有的 Follower 服务器,也就是向所有 Follower 节点发送数据广播请求(或数据复制)
3)分发之后Leader服务器需要等待所有Follower服务器的反馈(Ack请求),在Zab协议中,只要超过半数的Follower服务器进行了正确的反馈后(也就是收到半数以上的Follower的Ack请求),那么 Leader 就会再次向所有的 Follower服务器发送 Commit 消息,要求其将上一个 事务proposal 进行提交。
Leader选举
1. Leader选举概述
Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。
(1) 服务器初始化启动。
(2) 服务器运行期间无法和Leader保持连接。
下面就两种情况进行分析讲解。
1.1. 服务器启动时期的Leader选举
若进行Leader选举,则至少需要两台机器,这里选取3台机器组成的服务器集群为例。在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下
(1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。
(2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。
(3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下
· 优先检查ZXID。ZXID比较大的服务器优先作为Leader。
· 如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。
对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。
(4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。
(5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。
1.2. 服务器运行时期的Leader选举
在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下
(1) 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。
(2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。
(3) 接收来自各个服务器的投票。与启动时过程相同。
(4) 处理投票。与启动时过程相同,此时,Server1将会成为Leader。
(5) 统计投票。与启动时过程相同。
(6) 改变服务器的状态。与启动时过程相同。
四、zookeeper中的watcher
Watcher是Zookeeper用来实现distribute lock, distribute configure, distribute queue等应用的主要手段。要监控data_tree上的任何节点的变化(节点本身的增加,删除,数据修改,以及孩子的变化)都可以在获取该数据时注册一个Watcher,这有很像Listener模式。一旦该节点数据变化,Follower会发送一个notification response,client收到notification响应,则会查找对应的Watcher并回调他们
Client可以在某个ZNode上设置一个Watcher,来Watch该ZNode上的变化。如果该ZNode上有相应的变化,就会触发这个Watcher,把相应的事件通知给设置Watcher的Client。需要注意的是,ZooKeeper中的Watcher是一次性的,即触发一次就会被取消,如果想继续Watch的话,需要客户端重新设置Watcher
ZooKeeper Watcher 特性总结
注册只能确保一次消费
无论是服务端还是客户端,一旦一个 Watcher 被触发,ZooKeeper 都会将其从相应的存储中移除。因此,开发人员在 Watcher 的使用上要记住的一点是需要反复注册。这样的设计有效地减轻了服务端的压力。如果注册一个 Watcher 之后一直有效,那么针对那些更新非常频繁的节点,服务端会不断地向客户端发送事件通知,这无论对于网络还是服务端性能的影响都非常大。
客户端串行执行
客户端 Watcher 回调的过程是一个串行同步的过程,这为我们保证了顺序,同时,需要开发人员注意的一点是,千万不要因为一个 Watcher 的处理逻辑影响了整个客户端的 Watcher 回调。
轻量级设计
WatchedEvent 是 ZooKeeper 整个 Watcher 通知机制的最小通知单元,这个数据结构中只包含三部分的内容:通知状态、事件类型和节点路径。也就是说,Watcher 通知非常简单,只会告诉客户端发生了事件,而不会说明事件的具体内容。例如针对 NodeDataChanged 事件,ZooKeeper 的 Watcher 只会通知客户指定数据节点的数据内容发生了变更,而对于原始数据以及变更后的新数据都无法从这个事件中直接获取到,而是需要客户端主动重新去获取数据,这也是 ZooKeeper 的 Watcher 机制的一个非常重要的特性。
ZooKeeper典型使用场景一览
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基 于这样的特性,使得zookeeper能够应用于很多场景。
1
数据发布与订阅
发布与订阅即所谓的配置管理,顾名思义就是将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。
索引信息和集群中机器节点状态存放在zk的一些指定节点,供各个客户端订阅使用。
系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。
应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。
业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。
系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了zk后,只要将这些信息存放到zk节点上即可。
分布通知/协调
ZooKeeper 中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对 ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能 够收到通知,并作出相应处理。
另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。
另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改 了ZK上某些节点的状态,而zk就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。
另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。
总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合。
分布式锁
分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把zk上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。
控制时序,就是所有视图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制:CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。
集群管理
集群机器监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:1. 集群中机器有变动的时候,牵连修改的东西比较多。2. 有一定的延时。
利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:a. 客户端在节点 x 上注册一个Watcher,那么如果 x 的子节点变化了,会通知该客户端。b. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。
Master选举则是zookeeper中最为经典的使用场景了。
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行, 其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。
利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。
原文链接:https://blog.csdn.net/qq_20161461/article/details/107742585/