首页 > 其他分享 >m基于PSO粒子群优化的地震灾后救援物资仓库最优存放方案matlab仿真

m基于PSO粒子群优化的地震灾后救援物资仓库最优存放方案matlab仿真

时间:2023-01-27 19:55:22浏览次数:67  
标签:PSO s1 j1 t1 算法 matlab 灾后 Rsjmt

1.算法描述

    PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(2)由于缺乏精密搜索方法的配合,PSO算法往往不能得到精确的结果。造成这种问题的原因是PSO算法并没有很充分地利用计算过程中获得的信息,在每一步迭代中,仅仅利用了群体最优和个体最优的信息。(3)PSO算法虽然提供了全局搜索的可能,但是并不能保证收敛到全局最优点上。(4)PSO算法是一种启发式的仿生优化算法,当前还没有严格的理论基础,仅仅是通过对某种群体搜索现象的简化模拟而设计的,但并没有从原理上说明这种算法为什么有效,以及它适用的范围。因此,PSO算法一般适用于一类高维的、存在多个局部极值点而并不需要得到很高精度解的优化问题。

        当前针对PSO算法开展的研究工作种类繁多,经归纳整理分为如下八个大类:(1)对PSO算法进行理论分析,试图理解其工作机理;(2)改变PSO算法的结构,试图获得性能更好的算法;(3)研究各种参数配置对PSO算法的影响;(4)研究各种拓扑结构对PSO算法的影响;(5)研究离散版本的PSO算法;(6)研究PSO算法的并行算法;(7)利用PSO算法对多种情况下的优化问题进行求解;(8)将PSO算法应用到各个不同的工程领域。以下从这八大类别着手,对PSO算法的研究现状作一梳理。由于文献太多,无法面面俱到,仅捡有代表性的加以综述。

 

       PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值(pbest和gbest)”来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

 

 根据要求文档,优化目标函数为:

 

对于公式(1):

 

公式(1)中的第一部分称为记忆项,表示上次速度大小和方向的影响;

公式(1)中的第二部分称为自身认知项,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;

公式(1)中的第三部分称为群体认知项,是一个从当前点指向种群最好点的矢量,反映了粒子间的协调合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

 

 

2.matlab算法仿真效果

matlab2022a仿真结果如下:

 

3.MATLAB核心程序

 

%Pia物品a的惩罚单价 
Pia = [1200,450,9000,4700];
 
%STOCa:物品a的存储量 
STOCa = [43010.16,70850.84,14170.33,21255.18];
 
%Wa: 物品a的单位重量
Wa = [4,18,40,5];
 
 
%Ca: 物品a的单位体积 
Ca = [0.054,0.054,0.2,0.01887];
 
%ra: 物品a的重要程度
ra = [0.35,0.3,0.2,0.15];
 
%vwm: 交通工具m的载重重量 
VWm= [4100,14000]; 
 
%vcm: 交通工具m的载重体积 
VCm= [45,1240]; 
 
%NVm: 初始可用交通工具数量  
NVm= [6,3]; 
 
%TCm:交通工具m的燃油费
TCm= [2.61,0.00295]; 
 
%QCm:后期租车费用
QCm= [28800,900]; 
 
%Probs: 每种情景发生的概率 
Probs=[0.0270,0.063,0.063,0.147,0.063,0.147,0.147,0.343];
 
Mm = 100000;
 
%LJ:  受灾点 j 到仓库的距离 
Lj=[75.4,113,204.9,121,93.2,38.1];
 
%在情景s的第t阶段下用交通工具m到受灾点j的路线可通
% [1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;       
% 1,1,1,1,1,1,1;
% 1,1,1,1,1,1,1;       
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;       
% 1,0,1,1,0,0,1;
% 1,0,1,1,0,0,1;];
 
Rsjmt = zeros(M,S,T,J); 
Rsjmt(1,1,1,1:6) = 1;
Rsjmt(1,1,2,1:6) = 1;
Rsjmt(1,2,1,1:6) = 1;
Rsjmt(1,2,2,1:6) = 1;
Rsjmt(1,3,1,1:6) = 1;
Rsjmt(1,3,2,1:6) = 1;
Rsjmt(1,4,1,1:6) = 1;
Rsjmt(1,4,2,1:6) = 1;
Rsjmt(1,5,1,1:6) = 1;
Rsjmt(1,5,2,1:6) = 1;
Rsjmt(1,6,1,1:6) = 1;
Rsjmt(1,6,2,1:6) = 1;
Rsjmt(1,7,1,1:6) = 1;
Rsjmt(1,7,2,1:6) = 1;
Rsjmt(1,8,1,1:6) = 1;
Rsjmt(1,8,2,1:6) = 1;
 
Rsjmt(2,1,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,1,2,1:6) = [1,0,1,1,0,0];
Rsjmt(2,2,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,2,2,1:6) = [1,0,1,1,0,1];
Rsjmt(2,3,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,3,2,1:6) = [1,0,1,1,1,0];
Rsjmt(2,4,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,4,2,1:6) = [1,0,1,1,1,1];
Rsjmt(2,5,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,5,2,1:6) = [1,1,1,1,0,0];
Rsjmt(2,6,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,6,2,1:6) = [1,1,1,1,0,1];
Rsjmt(2,7,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,7,2,1:6) = [1,1,1,1,1,0];
Rsjmt(2,8,1,1:6) = [1,0,1,1,0,0];
Rsjmt(2,8,2,1:6) = [1,1,1,1,1,1];
 
.......................................      
        %变量1的限制
        for s1 = 1:S
            for t1 = 1:T
                for m1 = 1:M
                    for j1 = 1:J
                        for a1 = 1:A
                            if Xsajmt(s1,t1,m1,j1,a1,i) >= max1
                               Xsajmt(s1,t1,m1,j1,a1,i) = max1;
                            end
                            if Xsajmt(s1,t1,m1,j1,a1,i) <= min1
                               Xsajmt(s1,t1,m1,j1,a1,i) = min1;
                            end                            
                        end 
                    end 
                end 
            end 
        end  
    
        
    
        %UDsajt
        %UDsajt
        %速度2设置
        for s1 = 1:S
            for t1 = 1:T
                for j1 = 1:J
                    for a1 = 1:A
                        vb(s1,t1,j1,a1,i) = w*vb(s1,t1,j1,a1,i)+...
                                               c1*rand(1)*(UDsajt_best(s1,t1,j1,a1,i)-UDsajt(s1,t1,j1,a1,i))+...
                                               c2*rand(1)*(TUDsajt_best(s1,t1,j1,a1)-UDsajt(s1,t1,j1,a1,i));
                    end 
                end 
            end 
        end 
        %更新
        for s1 = 1:S
            for t1 = 1:T
                for j1 = 1:J
                    for a1 = 1:A
                        UDsajt(s1,t1,j1,a1,i) = UDsajt(s1,t1,j1,a1,i) + vb(s1,t1,j1,a1,i);
                    end 
                end 
            end 
        end   
       %变量2的限制
        for s1 = 1:S
            for t1 = 1:T
                for j1 = 1:J
                    for a1 = 1:A
                        if UDsajt(s1,t1,j1,a1,i) >= max2
                           UDsajt(s1,t1,j1,a1,i) = max2;
                        end
                        if UDsajt(s1,t1,j1,a1,i) <= min2
                           UDsajt(s1,t1,j1,a1,i) = min2;
                        end                            
                    end 
                end 
            end 
        end 
       
        
        %QVsm
        %QVsm
        %速度3设置
        for s1 = 1:S
            for m1 = 1:M
                vc(s1,m1,i) = w*vc(s1,m1,i)+...
                                c1*rand(1)*(QVsm_best(s1,m1,i)-QVsm(s1,m1,i))+...
                                c2*rand(1)*(TQVsm_best(s1,m1)-QVsm(s1,m1,i));
            end 
        end 
        %更新
        for s1 = 1:S
            for m1 = 1:M
                QVsm(s1,m1,i) = QVsm(s1,m1,i) + vc(s1,m1,i);
            end 
        end
    
       %变量3的限制
        for s1 = 1:S
            for m1 = 1:M
                if QVsm(s1,m1,i) >= max3
                   QVsm(s1,m1,i) = max3;
                end
                if QVsm(s1,m1,i) <= min3
                   QVsm(s1,m1,i) = min3;
                end                            
            end 
        end 
       
        %Nsjmt
        %Nsjmt
        %速度4设置
        for s1 = 1:S
            for t1 = 1:T
                for m1 = 1:M
                    for j1 = 1:J
                        vd(s1,t1,m1,j1,i) = w*vd(s1,t1,m1,j1,i)+...
                                               c1*rand(1)*(Nsjmt_best(s1,t1,m1,j1,i)-Nsjmt(s1,t1,m1,j1,i))+...
                                               c2*rand(1)*(TNsjmt_best(s1,t1,m1,j1)-Nsjmt(s1,t1,m1,j1,i));
                    end 
                end 
            end 
        end 
        %更新
        for s1 = 1:S
            for t1 = 1:T
                for m1 = 1:M
                    for j1 = 1:J
                        Nsjmt(s1,t1,m1,j1,i) = Nsjmt(s1,t1,m1,j1,i) + vd(s1,t1,m1,j1,i);
                    end 
                end 
            end 
        end         
        %变量4的限制
        for s1 = 1:S
            for t1 = 1:T
                for m1 = 1:M
                    for j1 = 1:J
                        if Nsjmt(s1,t1,m1,j1,i) >= max4
                           Nsjmt(s1,t1,m1,j1,i) = max4;
                        end
                        if Nsjmt(s1,t1,m1,j1,i) <= min4
                           Nsjmt(s1,t1,m1,j1,i) = min4;
                        end                            
                    end 
                end 
            end 
        end  
        
        [BsJ,Xsajmt(:,:,:,:,:,i),UDsajt(:,:,:,:,i),QVsm(:,:,i),Nsjmt(:,:,:,:,i)] = func_fitness(Xsajmt(:,:,:,:,:,i),UDsajt(:,:,:,:,i),round(QVsm(:,:,i)),round(Nsjmt(:,:,:,:,i))); 
        
        if BsJ<BsJi(i)
           BsJi(i)   = BsJ;
           Xsajmt_best(:,:,:,:,:,i) = Xsajmt(:,:,:,:,:,i);
           UDsajt_best(:,:,:,:,i)   = UDsajt(:,:,:,:,i);
           QVsm_best(:,:,i)         = QVsm(:,:,i) ;
           Nsjmt_best(:,:,:,:,i)    = Nsjmt(:,:,:,:,i);  
        end
        if BsJi(i)<minJi
           minJi   = BsJi(i);
           TXsajmt_best(:,:,:,:,:,i) = Xsajmt(:,:,:,:,:,i);
           TUDsajt_best(:,:,:,:,i)   = UDsajt(:,:,:,:,i);
           TQVsm_best(:,:,i)         = QVsm(:,:,i) ;
           TNsjmt_best(:,:,:,:,i)    = Nsjmt(:,:,:,:,i);  
        end
    end
    Jibest(t) = minJi;
end
 
Xsajmt0 = Xsajmt(:,:,:,:,:,end);
UDsajt0 = UDsajt(:,:,:,:,end);
QVsm0   = round(QVsm(:,:,end));
Nsjmt0  = round(Nsjmt(:,:,:,:,end));
02_039m

 

  

 

标签:PSO,s1,j1,t1,算法,matlab,灾后,Rsjmt
From: https://www.cnblogs.com/51matlab/p/17069245.html

相关文章