首页 > 其他分享 >binary_cross_entropy and binary_cross_entropy_with_logits

binary_cross_entropy and binary_cross_entropy_with_logits

时间:2023-01-27 14:00:30浏览次数:54  
标签:binary tensor pred torch cross entropy

import torch
import torch.nn as nn
import torch.nn.functional as F

模拟的输入x变量:4分类问题

batch_size, n_classes = 10, 4
x = torch.randn(batch_size, n_classes)
x.shape

x维度

torch.Size([10, 4])

x

tensor([[ 2.3611, -0.8813, -0.5006, -0.2178],
        [ 0.0419,  0.0763, -1.0457, -1.6692],
        [-1.0494,  0.8111,  1.5723,  1.2315],
        [ 1.3081,  0.6641,  1.1802, -0.2547],
        [ 0.5292,  0.7636,  0.3692, -0.8318],
        [ 0.5100,  0.9849, -1.2905,  0.2821],
        [ 1.4662,  0.4550,  0.9875,  0.3143],
        [-1.2121,  0.1262,  0.0598, -1.6363],
        [ 0.3214, -0.8689,  0.0689, -2.5094],
        [ 1.1320, -0.6824,  0.1657, -0.0687]])

模拟目标y变量

target = torch.randint(n_classes, size=(batch_size,), dtype=torch.long)
target
tensor([1, 1, 3, 0, 2, 0, 2, 2, 1, 2])

onehot-y

y = torch.zeros(batch_size, n_classes)
y[range(y.shape[0]), target]=1
y
tensor([[0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 0., 0., 1.],
        [1., 0., 0., 0.],
        [0., 0., 1., 0.],
        [1., 0., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.]])

sigmoid + binary_cross_entropy
reciprocal表示取倒数,binary_cross_entropy计算的是负的对数似然函数(这样求极大转化成求极小,可以梯度下降)

def sigmoid(x): return (1 + (-x).exp()).reciprocal()
def binary_cross_entropy(input, y): return -(pred.log()*y + (1-y)*(1-pred).log()).mean()
 
pred = sigmoid(x)
loss = binary_cross_entropy(pred, y)
loss

Out:

tensor(0.7739)

F.sigmoid + F.binary_cross_entropy
The above but in pytorch:

pred = torch.sigmoid(x)
loss = F.binary_cross_entropy(pred, y)
loss
tensor(0.7739)

F.binary_cross_entropy_with_logits
Pytorch's single binary_cross_entropy_with_logits function.

F.binary_cross_entropy_with_logits(x, y)
out:
tensor(0.7739)

标签:binary,tensor,pred,torch,cross,entropy
From: https://www.cnblogs.com/sxq-blog/p/17068865.html

相关文章