首页 > 其他分享 >迁移学习(DDC)《Deep Domain Confusion: Maximizing for Domain Invariance》

迁移学习(DDC)《Deep Domain Confusion: Maximizing for Domain Invariance》

时间:2023-01-25 18:33:19浏览次数:75  
标签:Domain right Maximizing Confusion 论文 Invariance left

论文信息

 

论文标题:Deep Domain Confusion: Maximizing for Domain Invariance
论文作者:Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, Trevor Darrell
论文来源:arxiv 2014
论文地址:download 
论文代码:download
引用次数:2203

1 介绍

  域适应方法。

2 Method

  模型框架:

    

    

  目标函数:

    $\operatorname{MMD}\left(X_{S}, X_{T}\right)= \quad\left\|\frac{1}{\left|X_{S}\right|} \sum_{x_{s} \in X_{S}} \phi\left(x_{s}\right)-\frac{1}{\left|X_{T}\right|} \sum_{x_{t} \in X_{T}} \phi\left(x_{t}\right)\right\|$

    $\mathcal{L}=\mathcal{L}_{C}\left(X_{L}, y\right)+\lambda \operatorname{MMD}^{2}\left(X_{S}, X_{T}\right)$

标签:Domain,right,Maximizing,Confusion,论文,Invariance,left
From: https://www.cnblogs.com/BlairGrowing/p/17066487.html

相关文章