首页 > 其他分享 >1952年——2021年人口结构基本情况分析

1952年——2021年人口结构基本情况分析

时间:2022-12-15 15:36:23浏览次数:72  
标签:color 人口 add 2021 1952 data opts

一、选题背景  

   新中国成立前期,由于国际局势紧张和斗争带来的影响,我国鼓励生育,后来由于人口的过快增长给社会经济发展带来了严重影响,我国从1970年开始实施计划生育,人口自然增长率开始下降,到现代由于老龄化危机和人口增长跟不上经济发展需求,中国逐步放开二胎政策(全面二胎)。由此可以看出,人口问题是影响我国经济发展的重要因素之一,因此有必要研究在新形势下人口结构的基本情况。所以本次课程设计根据相关统计数据分析我国1952年-2021年的人口结构状况。

二、设计方案

1、通过爬取国家数据分析不同年份的人口结构,主要爬取的目标信息有总人口数、男性人口、女性人口、城镇人口、乡村人口、人口出生率、人口死亡率、人口自然增长率、0-14岁人口、15-64岁人口、65岁及其以上人口、总抚养比、少儿抚养比、老年抚养比。

2、爬取数据后将数据清洗为自己需要的数据然后保存到Excel中,然后从Excel中提取数据通过Python绘制图像。

三、网页结构

https://data.stats.gov.cn/easyquery.htm?cn=C01

四、程序设计

1、获取1952——2021年的数据

def spider_population():
    url = 'https://data.stats.gov.cn/easyquery.htm?m=QueryData&dbcode=hgnd&rowcode=zb&colcode=sj&wds=%5B%5D&dfwds=%5B%7B%22wdcode%22%3A%22zb%22%2C%22valuecode%22%3A%22A0301%22%7D%5D&k1=1670909912224&h=1'
    response = requests.get(url,verify=False)
    print(response.json())   
spider_population()

def spider_population(): 
    #获取近1952-2021年的人口信息
    # 总人口
    dfwds1 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0301"}]'
    url = 'https://data.stats.gov.cn/easyquery.htm?m=QueryData&dbcode=hgnd&rowcode=sj&colcode=zb&wds=[]&dfwds={}'
    response1 = requests.get(url.format(dfwds1),verify=False)
    print(response1.json()) 
spider_population()

def spider_population():
    
    dfwds1 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0301"}]'
    # 增长率
    dfwds2 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0302"}]'
    # 人口结构
    dfwds3 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0303"}]'
    url = 'https://data.stats.gov.cn/easyquery.htm?m=QueryData&dbcode=hgnd&rowcode=sj&colcode=zb&wds=[]&dfwds={}'
    
    response1 = requests.get(url.format(dfwds1),verify=False)
    response2 = requests.get(url.format(dfwds2),verify=False)
    response3 = requests.get(url.format(dfwds3),verify=False)   
spider_population()

2、清洗数据保存到Excel中

import pandas as pd
import requests

# 人口数量excel文件保存路径
POPULATION_EXCEL_PATH = 'D:\\Users\\Rain\\Desktop\\python作业\\population.xlsx'


def spider_population():
    """
    爬取人口数据
    """
    # 请求参数 sj(时间),zb(指标)
    # 总人口
    dfwds1 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0301"}]'
    # 增长率
    dfwds2 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0302"}]'
    # 人口结构
    dfwds3 = '[{"wdcode": "sj", "valuecode": "LAST70"}, {"wdcode":"zb","valuecode":"A0303"}]'
    url = 'https://data.stats.gov.cn/easyquery.htm?m=QueryData&dbcode=hgnd&rowcode=sj&colcode=zb&wds=[]&dfwds={}'
    # 将所有数据放这里,年份为key,值为各个指标值组成的list
    # 因为 2019 年数据还没有列入到年度数据表里,所以根据统计局2019年经济报告中给出的人口数据计算得出
    # 数据顺序为历年数据
    population_dict = {
        '2022': [2022, 141260, 72311, 68949, 91425, 49835, 10.48, 7.14, 3.34, 140005, 25061, 97341, 17603, 43.82942439,
                 25.74557483, 18.08384956]}

    response1 = requests.get(url.format(dfwds1),verify=False)
    get_population_info(population_dict, response1.json())

    response2 = requests.get(url.format(dfwds2),verify=False)
    get_population_info(population_dict, response2.json())

    response3 = requests.get(url.format(dfwds3),verify=False)
    get_population_info(population_dict, response3.json())

    save_excel(population_dict)

    return population_dict


def get_population_info(population_dict, json_obj):
    """
    提取人口数量信息
    """
    datanodes = json_obj['returndata']['datanodes']
    for node in datanodes:
        # 获取年份
        year = node['code'][-4:]
        # 数据数值
        data = node['data']['data']
        if year in population_dict.keys():
            population_dict[year].append(data)
        else:
            population_dict[year] = [int(year), data]
    return population_dict


def save_excel(population_dict):
    """
    人口数据生成excel文件
    """
    # .T 是行列转换
    df = pd.DataFrame(population_dict).T[::-1]
    df.columns = ['年份', '年末总人口(万人)', '男性人口(万人)', '女性人口(万人)', '城镇人口(万人)', '乡村人口(万人)', '人口出生率(‰)', '人口死亡率(‰)',
                  '人口自然增长率(‰)', '年末总人口(万人)', '0-14岁人口(万人)', '15-64岁人口(万人)', '65岁及以上人口(万人)', '总抚养比(%)',
                  '少儿抚养比(%)', '老年抚养比(%)']
    writer = pd.ExcelWriter(POPULATION_EXCEL_PATH)
    # columns参数用于指定生成的excel中列的顺序
    df.to_excel(excel_writer=writer, index=False, encoding='utf-8', sheet_name='中国70年人口数据')
    writer.save()
    writer.close()


if __name__ == '__main__':
    result_dict = spider_population()
    # print(result_dict)

3、分析人口总数

def analysis_total():
    """
    分析总人口
    """
    # 1、分析总人口,画人口曲线图
    # 1.1 处理数据
    x_data = DF_STANDARD['年份']
    # 将人口单位转换为亿
    y_data = DF_STANDARD['年末总人口(万人)'].map(lambda x: "%.2f" % (x / 10000))
    
    # 1.2 自定义曲线图
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
            .add_xaxis(xaxis_data=x_data)
            .add_yaxis(
            series_name="总人口",
            y_axis=y_data,
            is_smooth=True,
            is_symbol_show=True,
            symbol="circle",
            symbol_size=5,
            linestyle_opts=opts.LineStyleOpts(color="#fff"),
            label_opts=opts.LabelOpts(is_show=False, position="top", color="white"),
            itemstyle_opts=opts.ItemStyleOpts(
                color="red", border_color="#fff", border_width=1
            ),
            tooltip_opts=opts.TooltipOpts(is_show=False),
            areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),
                
            # 标出4个关键点的数据
            markpoint_opts=opts.MarkPointOpts(
                data=[opts.MarkPointItem(name="新中国成立(1949年)", coord=[0, y_data[0]], value=y_data[0]),
                      opts.MarkPointItem(name="计划生育(1980年)", coord=[31, y_data[31]], value=y_data[31]),
                      opts.MarkPointItem(name="放开二胎(2016年)", coord=[67, y_data[67]], value=y_data[67]),
                      opts.MarkPointItem(name="2021年", coord=[70, y_data[70]], value=y_data[70])
                      ]
            ),
            # markline_opts 可以画直线
            # markline_opts=opts.MarkLineOpts(
            #     data=[[opts.MarkLineItem(coord=[39, y_data[39]]),
            #            opts.MarkLineItem(coord=[19, y_data[19]])],
            #           [opts.MarkLineItem(coord=[70, y_data[70]]),
            #            opts.MarkLineItem(coord=[39, y_data[39]])]],
            #     linestyle_opts=opts.LineStyleOpts(color="red")
            # ),
        )
            .set_global_opts(
            title_opts=opts.TitleOpts(
                title="新中国70年人口变化(亿人)",
                pos_bottom="5%",
                pos_left="center",
                title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16),
            ),
            # x轴相关的选项设置
            xaxis_opts=opts.AxisOpts(
                type_="category",
                boundary_gap=False,
                axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(
                    is_show=True,
                    length=25,
                    linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
                ),
                splitline_opts=opts.SplitLineOpts(
                    is_show=False, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
                ),
            ),
            # y轴相关选项设置
            yaxis_opts=opts.AxisOpts(
                type_="value",
                position="left",
                axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(width=0, color="#ffffff1f")
                ),
                axistick_opts=opts.AxisTickOpts(
                    is_show=True,
                    length=15,
                    linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
                ),
                splitline_opts=opts.SplitLineOpts(
                    is_show=False, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
                ),
            ),
            # 图例配置项相关设置
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )
    
    
    # 2、分析计划生育执行前后增长人口
    # 2.1 数据处理
    total_1952 = DF_STANDARD[DF_STANDARD['年份'] == 1952]['年末总人口(万人)'].values
    total_1979 = DF_STANDARD[DF_STANDARD['年份'] == 1979]['年末总人口(万人)'].values
    total_2006 = DF_STANDARD[DF_STANDARD['年份'] == 2006]['年末总人口(万人)'].values
    total_2021 = DF_STANDARD[DF_STANDARD['年份'] == 2021]['年末总人口(万人)'].values
    increase_1952_1979 = '%.2f' % (int(total_1979 - total_1952) / 10000)
    increase_1979_2006 = '%.2f' % (int(total_2006 - total_1979) / 10000)
    increase_2006_2021 = '%.2f' % (int(total_2021 - total_2006) / 10000)
    
    # 2.2 画柱状图
    bar = (
        Bar(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
            .add_xaxis([''])
            .add_yaxis("计划生育29年:1952-1979", [increase_1952_1979], color=JsCode(area_color_js),
                       label_opts=opts.LabelOpts(color='white', font_size=16))
            .add_yaxis("计划生育后:1979-2006", [increase_1979_2006], color=JsCode(area_color_js),
                       label_opts=opts.LabelOpts(color='white', font_size=16))
            .add_yaxis("开放二胎后:2006-2021", [increase_2006_2021], color=JsCode(area_color_js),
               label_opts=opts.LabelOpts(color='white', font_size=16))
            .set_global_opts(
            title_opts=opts.TitleOpts(
                title="计划生育执行前29年(1952-1979)与后27年(1979-2006)以及二胎开放(2006-2021)增加人口总数比较(亿人)",
                pos_bottom="5%",
                pos_left="center",
                title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16)
            ),
            xaxis_opts=opts.AxisOpts(
                # 隐藏x轴的坐标线
                axisline_opts=opts.AxisLineOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                # y轴坐标数值
                axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),
                # y 轴 轴线
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(width=0, color="#ffffff1f")
                ),
                # y轴刻度横线
                axistick_opts=opts.AxisTickOpts(
                    is_show=True,
                    length=15,
                    linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
                ),
            ),
            legend_opts=opts.LegendOpts(is_show=False)
        )
    )
    
    # 3、渲染图像,将多个图像显示在一个html中
    # DraggablePageLayout表示可拖拽
    page = Page(layout=Page.DraggablePageLayout)
    page.add(line)
    page.add(bar)
    page.render('D:\\Users\\Rain\\Desktop\\python作业\\人口分析.html')

analysis_total()

4、分析人口城镇化

def analysis_urbanization():
    """
    分析人口城镇化
    """
    # 年份
    x_data_year = DF_STANDARD['年份']
    
    # 2021年我国人口城镇化
    urbanization_2021 = DF_STANDARD[DF_STANDARD['年份'] == 2021][['城镇人口(万人)', '乡村人口(万人)']]
    pie = (
        Pie()
            .add("", [list(z) for z in zip(['城镇人口', '乡村人口'], np.ravel(urbanization_2021.values))])
            .set_global_opts(title_opts=opts.TitleOpts(title="2021中国城镇化比例", pos_bottom="bottom", pos_left="center", ),
                             legend_opts=opts.LegendOpts(is_show=False))
            .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))

    )
    
    # 2、城镇化比例曲线
    y_data_city = DF_STANDARD['城镇人口(万人)'] / 10000
    y_data_countryside = DF_STANDARD['乡村人口(万人)'] / 10000
    line1 = (
        Line()
            .add_xaxis(x_data_year)
            .add_yaxis("城镇人口", y_data_city)
            .add_yaxis(series_name="乡村人口", y_axis=y_data_countryside,
                       # 标记线
                       markline_opts=opts.MarkLineOpts(
                           # 去除标记线的箭头
                           symbol='none',
                           label_opts=opts.LabelOpts(font_size=16),
                           data=[[opts.MarkLineItem(coord=[46, 0]),
                                  opts.MarkLineItem(name='1995', coord=[46, y_data_countryside[46]])],
                                 [opts.MarkLineItem(coord=[61, 0]),
                                  opts.MarkLineItem(name='2010', coord=[61, y_data_countryside[61]])]],
                           # opacity不透明度 0 - 1
                           linestyle_opts=opts.LineStyleOpts(color="red", opacity=0.3)
                       ),
                       # 标出关键点的数据
                       markpoint_opts=opts.MarkPointOpts(
                           data=[opts.MarkPointItem(name="1995年", coord=[46, y_data_countryside[46]],
                                                    value="%.2f" % (y_data_countryside[46])),
                                 opts.MarkPointItem(name="2010年", coord=[61, y_data_countryside[61]],
                                                    value="%.2f" % (y_data_countryside[61]))]
                       )
                       )
            .set_global_opts(
            title_opts=opts.TitleOpts(title="中国70年(1952-2021)城乡人口曲线(亿人)", pos_left="center", pos_top="bottom"),
            xaxis_opts=opts.AxisOpts(type_="category")
        )
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    )

    # 3、城镇化曲线
    y_data_urbanization = (DF_STANDARD['城镇人口(万人)'] / DF_STANDARD['年末总人口(万人)']).map(lambda x: "%.2f" % (x * 100))
    line2 = (
        Line()
            .add_xaxis(x_data_year)
            .add_yaxis(
            series_name="中国人口城镇化比例曲线",
            y_axis=y_data_urbanization.values,
            markline_opts=opts.MarkLineOpts(symbol='none', data=[opts.MarkLineItem(y=30), opts.MarkLineItem(y=70)])
        )
            .set_global_opts(
            title_opts=opts.TitleOpts(title="中国(1952-2021)人口城镇化比例曲线", pos_left="center", pos_top="bottom"),
            xaxis_opts=opts.AxisOpts(type_="category"),
            # y轴显示百分比,并设置最小值和最大值
            yaxis_opts=opts.AxisOpts(type_="value", max_=100, min_=10,
                                     axislabel_opts=opts.LabelOpts(formatter='{value} %')),
            legend_opts=opts.LegendOpts(is_show=False),
        )
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    )

    # 4、渲染图像,将多个图像显示在一个html中
    page = Page(layout=Page.DraggablePageLayout)
    page.add(pie)
    page.add(line1)
    page.add(line2)
    page.render('D:\\Users\\Rain\\Desktop\\python作业\\人口城镇化.html')
    
analysis_urbanization()

5、人口增长率

def analysis_growth():
    """
    分析人口增长率
    """
    # 1、三条曲线
    x_data_year = DF_STANDARD['年份']
    y_data_birth = DF_STANDARD['人口出生率(‰)']
    y_data_death = DF_STANDARD['人口死亡率(‰)']
    y_data_growth = DF_STANDARD['人口自然增长率(‰)']
    line1 = (
        Line()
            .add_xaxis(x_data_year)
            .add_yaxis("人口出生率", y_data_birth)
            .add_yaxis("人口死亡率", y_data_death)
            .add_yaxis("人口自然增长率", y_data_growth)
            .set_global_opts(
            # y轴显示百分比,并设置最小值和最大值
            yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{value} ‰')),
            title_opts=opts.TitleOpts(title="中国70年(1952-2021)出生率、死亡率及增长率变化", subtitle="1952-2021年,单位:‰",
                                      pos_left="center",
                                      pos_top="bottom"),
            xaxis_opts=opts.AxisOpts(type_="category"),
        )
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    )
    # 2、渲染图像,将两个图像显示在一个html中
    page = Page(layout=Page.DraggablePageLayout)
    page.add(line1)
    page.render('D:\\Users\\Rain\\Desktop\\python作业\\人口增长率分析.html')
analysis_growth()

6、年龄结构

def analysis_age():
    """
    分析年龄结构
    """
    new_df = DF_STANDARD[DF_STANDARD['0-14岁人口(万人)'] != 0][['年份', '0-14岁人口(万人)', '15-64岁人口(万人)', '65岁及以上人口(万人)']]
    x_data_year = new_df['年份']
    y_data_age_14 = new_df['0-14岁人口(万人)']
    y_data_age_15_64 = new_df['15-64岁人口(万人)']
    y_data_age_65 = new_df['65岁及以上人口(万人)']
    line1 = (
        Line()
            .add_xaxis(x_data_year)
            .add_yaxis("0-14岁人口", y_data_age_14)
            .add_yaxis("15-64", y_data_age_15_64)
            .add_yaxis("65岁及以上人口", y_data_age_65)
            .set_global_opts(
            # y轴显示百分比,并设置最小值和最大值
            yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{value}万')),
            title_opts=opts.TitleOpts(title="中国人口年龄结构变化图(万人)",
                                      pos_left="center",
                                      pos_top="bottom"),
            xaxis_opts=opts.AxisOpts(type_="category"),
        )
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    )
    # 2、2000年龄结构与2021年龄结构
    age_2000 = DF_STANDARD[DF_STANDARD['年份'] == 2000][['0-14岁人口(万人)', '15-64岁人口(万人)', '65岁及以上人口(万人)']]
    age_2021 = DF_STANDARD[DF_STANDARD['年份'] == 2021][['0-14岁人口(万人)', '15-64岁人口(万人)', '65岁及以上人口(万人)']]

    pie = (
        Pie()
            .add(
            "2000",
            [list(z) for z in zip(['0-14', '15-64', '65'], np.ravel(age_2000.values))],
            center=["20%", "50%"],
            radius=[60, 80],
        )
            .add(
            "2021",
            [list(z) for z in zip(['0-14', '15-64', '65'], np.ravel(age_2021.values))],
            center=["55%", "50%"],
            radius=[60, 80],
        )
            .set_series_opts(label_opts=opts.LabelOpts(position="top", formatter="{b}: {d}%"))
            .set_global_opts(
            title_opts=opts.TitleOpts(title="中国2000~2021年年龄结构对比图", pos_left="center",
                                      pos_top="bottom"),
            legend_opts=opts.LegendOpts(
                type_="scroll", pos_top="20%", pos_left="80%", orient="vertical"
            ),
        )
    )
    # 3、抚养比曲线
    new_df = DF_STANDARD[DF_STANDARD['总抚养比(%)'] != 0][['年份', '总抚养比(%)', '少儿抚养比(%)', '老年抚养比(%)']]
    x_data_year2 = new_df['年份']
    y_data_all = new_df['总抚养比(%)']
    y_data_new = new_df['少儿抚养比(%)']
    y_data_old = new_df['老年抚养比(%)']
    line2 = (
        Line()
            .add_xaxis(x_data_year2)
            .add_yaxis(series_name="总抚养比", y_axis=y_data_all, markpoint_opts=opts.MarkPointOpts(
            data=[opts.MarkPointItem(name="1995年", coord=[22, y_data_all.values[22]],
                                     value="%.2f" % (y_data_all.values[22]))
                  ]
        ))
            .add_yaxis("少儿抚养比", y_data_new)
            .add_yaxis("老年抚养比", y_data_old)
            .set_global_opts(
            # y轴显示百分比,并设置最小值和最大值
            yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{value}%')),
            title_opts=opts.TitleOpts(title="中国抚养比变化曲线图",
                                      pos_left="center",
                                      pos_top="bottom"),
            xaxis_opts=opts.AxisOpts(type_="category"),
        )
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    )
    # 4、渲染图像,将两个图像显示在一个html中
    page = Page(layout=Page.DraggablePageLayout)
    page.add(line1)
    page.add(line2)
    page.add(pie)
    page.render('D:\\Users\\Rain\\Desktop\\python作业\\人口结构.html')
analysis_age()

5、结论

1.总人口:我国总人口稳步增长,但在2016年之后逐渐放缓特别是疫情的情况的,出生率并没有随着二胎和三胎政策的开发二得到提升,反而成下降趋势。

2、人口城镇化:城镇化逐年稳步提升

3、人口增长率:人口的出生率持续走弟2021年的出生率达到新底。

4、年龄结构:65岁以上逐步增长 0-14岁的新生儿和青年开始逐渐减少。

标签:color,人口,add,2021,1952,data,opts
From: https://www.cnblogs.com/liuweijie2103840108/p/16985115.html

相关文章