写在前面
- 之前上学使用
华为
的ModelArts
平台做了类似的图像识别
之类的小项目,零编码,但是需要自己搞数据集,标注、选择算法、训练模型等,用的话直接调API。 -
NLP
方面之前的一个实习公司有用,对一些类似招股书文件数据进行核查的。那会我作为Java开发做些数据清洗的工作,调NLP的接口去识别一些表格,然后用java写一些逻辑,把数据的按要求分类整理上传。 - 在之后工作中没有接触过,也没有学习过,但是对这方面蛮感兴趣的。基本算是小白,对
NLP
之类的算法也不懂,买了一本相关的书籍,也落灰了。看到这个活动,想学习学习,所以参加了。 - 依旧,
活动内容:
使用Azure认知服务免费提供的AI服务
(包括语音转文本、文本转语音、语音翻译、文本分析、文本翻译、语言理解)开发智能应用,并以博文形式分享使用上述服务(至少试用3项服务)教程以及自己的使用心得体验;
我徒然学会了抗拒热闹,却还来不及透悟真正的冷清。--------张大春
在使用之前我们需要先了解下相关概念
一、关于认知服务的一些基本概念和术语
什么是 Azure 认知服务?:
认知服务: 提供认知理解(看、听、说、理解,甚至可以决策的认知)功能的服务。
认知服务主要分为四大类:
- 影像
- 语音
- 语言
- 决策
Azure 认知服务
是具有 REST API
和客户端库 SDK
的基于云的服务
,可用于帮助你将认知智能
构建到应用程序中。 即使你没有人工智能 (AI) 或数据科学技能
,也可向应用程序添加认知功能。Azure 认知服务
包含各种 AI 服务
,让你能够构建可以看、听、说、理解,甚至可以决策的认知解决方案。
我们要做一个可以和自己聊天的机器人,需要语言理解,即告诉机器人想说什么话,我们先看看这部分
二、什么是语言理解 (LUIS)?
语言理解 (LUIS) 是一种基于云的对话式 AI 服务
,可在用户对话的自然语言文本中应用自定义机器学习智能,以便预测整体含义并提炼出相关的详细信息
。 LUIS 通过其自定义门户、API 和 SDK 客户端库提供访问权限。找重点,会提炼出相关信息,换句话讲,就是把要表达的信息转化成机器或者说AI能够识别的信息。
1)、服务构建步骤
1、创建一个资源
使用Azure门户创建新资源 |
关于Azure 认知服务入门方面的教程,小伙伴可以移步官方文档 https://docs.azure.cn/zh-cn/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Cwindows |
2、服务应用构建
步骤 |
登录到LUIS门户 |
创建新应用 |
生成模型 |
添加意向,即你要说些什么话,即语料,这个随便写点 |
添加13-15个 |
添加实体 |
使用预构建的模型,这里我们全都选择了,上面的2步应该就是生成这个,类似模板 |
训练模型 |
发布模型 |
查看信息 |
3、发布应用服务测试,使用python脚本调用接口
########### Python 3.6 #############
#
# This quickstart shows how to predict the intent of an utterance by using the LUIS REST APIs.
# 导入模块
import requests
try:
##########
# Values to modify.
# YOUR-APP-ID: The App ID GUID found on the www.luis.ai Application Settings page.
# 替换为自己的APP-ID
appId = '949d3538-07df-4149-bee8-83dc7f4e11bd'
# YOUR-PREDICTION-KEY: Your LUIS prediction key, 32 character value.
prediction_key = '24440ef2829c45f0**61599ee00b496a'
# YOUR-PREDICTION-ENDPOINT: Replace with your prediction endpoint.
# For example, "https://westus.api.cognitive.microsoft.com/"
prediction_endpoint = 'https://chatbot0.cognitiveservices.azure.cn/'
# The utterance you want to use.
# 你想和他说的话..
utterance = '一个人怎么生活?'
##########
# The headers to use in this REST call.
headers = {
}
# The URL parameters to use in this REST call.
params ={
'query': utterance,
'timezoneOffset': '0',
'verbose': 'true',
'show-all-intents': 'true',
'spellCheck': 'false',
'staging': 'false',
'subscription-key': prediction_key
}
# Make the REST call.
response = requests.get(f'{prediction_endpoint}luis/prediction/v3.0/apps/{appId}/slots/production/predict', headers=headers, params=params)
# Display the results on the console.
print(response.json())
except Exception as e:
# Display the error string.
print(f'{e}')
这里我们用docker搞一个python环境,然后执行一下脚本,测试一下
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ docker pull centos/python-36-centos7
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ ls
input luis_run.sh output predict.py
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ docker run --rm -it --name=chatbot -v $PWD/predict.py:/predict.py centos/python-36-centos7 /bin/bash
(app-root) cd /
(app-root) ls
anaconda-post.log bin boot dev etc help.1 home lib lib64 media mnt opt predict.py proc root run sbin srv sys tmp usr var
(app-root) python predict.py
Traceback (most recent call last):
File "predict.py", line 6, in <module>
import requests
ModuleNotFoundError: No module named 'requests'
(app-root) pip install requests
.........................
Collecting requests
Downloading https:/
.....
(app-root) python predict.py
{'query': '一个人怎么生活?',
'prediction':
{'topIntent': '生活加油', 'intents': {'生活加油': {'score': 0.8969882}, 'Calendar.ShowNext': {'score': 0.58274937}, 'Calendar.FindCalendarWhen': {'score': 0.25383785}, 'Places.GetReviews': {'score': 0.24764298}, 'Utilities.ReadAloud': {'score': 0.20971665}, 'HomeAutomation.QueryState': {'score': 0.15509635}, 'Calendar.CheckAvailability': {'score': 0.12212229}, 'Places.GetPriceRange': {'score': 0.122063436},........
测试成功 :predict.py脚本
2)、本地部署服务,启动和运行
1、 LUIS环境准备
进入资源 |
按照部署要求一步步构建 |
拉取镜像 |
最好找个镜像加速器配置一下,要不太慢了 |
2、安装并运行 LUIS 的 Docker 容器
运行步骤 |
必需的参数:所有认知服务容器都需要三个主要参数。 |
运行 LUIS 的 Docker 容器
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ mkdir input output
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ ls
input luis_run.sh output
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ cat luis_run.sh
docker run --rm -it -p 5000:5000 --memory 4g --cpus 2 -v $PWD/input:/input -v $PWD/output:/output mcr.microsoft.com/azure-cognitive-services/language/luis Eula=accept Billing=https://chatbot0.cognitiveservices.azure.cn/ ApiKey=24440ef2829c45f0**61599ee00b496a ##这里参数填自己的
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ docker run --rm -it -p 5000:5000 --memory 4g --cpus 2 -v $PWD/input:/input -v $PWD/output:/output mcr.microsoft.com/azure-cognitive-services/language/luis Eula=accept Billing=https://chatbot0.cognitiveservices.azure.cn/ ApiKey=24440ef2829c45f0a**1599ee00b496a ## 启动容器
EULA Notice: Copyright © Microsoft Corporation 2020. This Cognitive Services Container image is made available to you under the terms [https://go.microsoft.com/fwlink/?linkid=2018657] governing your subscription to Microsoft Azure Services (including the Online Services Terms [https://go.microsoft.com/fwlink/?linkid=2018760]). If you do not have a valid Azure subscription, then you may not use this container.
Using '/input' for reading models and other read-only data.
Using '/output/luis/ff2a18ee78a1' for writing logs and other output data.
Logging to console.
Submitting metering to 'https://chatbot0.cognitiveservices.azure.cn/'.
warn: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[35]
No XML encryptor configured. Key {d826e89b-febe-4b93-bad8-db07cb994012} may be persisted to storage in unencrypted form.
warn: Microsoft.AspNetCore.Server.Kestrel[0]
Overriding address(es) 'http://+:80'. Binding to endpoints defined in UseKestrel() instead.
Hosting environment: Production
Content root path: /app
Now listening on: http://0.0.0.0:5000
Application started. Press Ctrl+C to shut down.
测试 |
查看接口API |
应用包上传,放到input文件夹下
┌──(liruilong㉿Liruilong)-[/mnt/c/Users/lenovo/Downloads]
└─$ scp ./949d3538-07df-4149-bee8-83dc7f4e11bd_production.gz root@192.168.26.55:/
949d3538-07df-4149-bee8-83dc7f4e11bd_production.gz 100% 6434KB 19.0MB/s 00:00
放到input文件夹下,启动容器
┌──[root@liruilongs.github.io]-[/]
└─$ cp 949d3538-07df-4149-bee8-83dc7f4e11bd_production.gz /liruilong/input/
┌──[root@liruilongs.github.io]-[/]
└─$ cd /liruilong/input/
┌──[root@liruilongs.github.io]-[/liruilong/input]
└─$ ls
949d3538-07df-4149-bee8-83dc7f4e11bd_production.gz
┌──[root@liruilongs.github.io]-[/liruilong/input]
└─$ cd ..
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ pwd
/liruilong
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ # 启动容器服务
┌──[root@liruilongs.github.io]-[/liruilong]
└─$ docker run --rm --name=demo -it -p 5000:5000 --memory 4g --cpus 2 -v $PWD/input:/input -v $PWD/output:/output mcr.microsoft.com/azure-cognitive-services/language/luis Eula=accept Billing=https://chatbot0.cognitiveservices.azure.cn/ ApiKey=24440ef2829c45f0a**1599ee00b496a
EULA Notice: Copyright © Microsoft Corporation 2020. This Cognitive Services Container image is made available to you under the terms [https://go.microsoft.com/fwlink/?linkid=2018657] governing your subscription to Microsoft Azure Services (including the Online Services Terms [https://go.microsoft.com/fwlink/?linkid=2018760]). If you do not have a valid Azure subscription, then you may not use this container.
Using '/input' for reading models and other read-only data.
Using '/output/luis/da43b9631f9d' for writing logs and other output data.
Logging to console.
Submitting metering to 'https://chatbot0.cognitiveservices.azure.cn/'.
warn: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[35]
No XML encryptor configured. Key {886021ff-6bf5-423d-be12-ba9b52383b9e} may be persisted to storage in unencrypted form.
warn: Microsoft.AspNetCore.Server.Kestrel[0]
Overriding address(es) 'http://+:80'. Binding to endpoints defined in UseKestrel() instead.
Hosting environment: Production
Content root path: /app
Now listening on: http://0.0.0.0:5000
Application started. Press Ctrl+C to shut down.
文件名不对,需要改一下 |
用swagger测试一下 |
随便找一句测试一下:
据悉,该活动由世界休闲组织,杭州市政府主办,中国国际科技促进会三农发展工作委员会等联合会承办。
{
"query": "据悉,该活动由世界休闲组织,杭州市政府主办,中国国际科技促进会三农发展工作委员会等联合会承办。",
"topScoringIntent": {
"intent": "Places.GetPhoneNumber",
"score": 0.9103095
},
"entities": [
{
"entity": "工作",
"type": "Calendar.Subject",
"startIndex": 35,
"endIndex": 36,
"score": 0.63087225
},
{
"entity": "际科技促进会三农发展工作委员会等联合会承办 。",
"type": "Note.Text",
"startIndex": 25,
"endIndex": 46,
"score": 0.6798551
},
{
"entity": "杭州市",
"type": "Places.AbsoluteLocation",
"startIndex": 14,
"endIndex": 16,
"score": 0.966151536
},
{
"entity": "国际科",
"type": "Places.PlaceName",
"startIndex": 24,
"endIndex": 26,
"score": 0.3605822
},
{
"entity": "工作",
"type": "Calendar.DestinationCalendar",
"startIndex": 35,
"endIndex": 36,
"resolution": {
"values": [
"工作"
]
}
},
{
"entity": "工作",
"type": "Places.OpenStatus",
"startIndex": 35,
"endIndex": 36,
"resolution": {
"values": [
"工作"
]
}
},
{
"entity": "休闲",
"type": "RestaurantReservation.Atmosphere",
"startIndex": 9,
"endIndex": 10,
"resolution": {
"values": [
"休闲"
]
}
}
]
}
回过头看看语言理解的定义:
语言理解 (LUIS) 是一种基于云的对话式 AI 服务
,可在用户对话的自然语言文本中应用自定义机器学习智能,以便预测整体含义并提炼出相关的详细信息
。 LUIS 通过其自定义门户、API 和 SDK 客户端库提供访问权限。找重点,会提炼出相关信息,换句话讲,就是把要表达的信息转化成机器或者说AI能够识别的信息。
简单尝试一下,可以把生成的实体组合,作为关键字给类似图灵机器人用,进行简单对话,简单测试了下,发现效果很一般,可能方法不太对,或者我找的机器人太差了,Azure的机器人需要注册绑卡…所以这个以后有时间研究研究
额…聊天机器人没出写来,唐突了,没法治愈自己了 ^ _ ^
下面看看其他的认知服务,语音合成产品系列,我们现在聊天大都是语音,对于聊天机器人来说,需要把语音转化为文本。然后才是语言理解。
三、什么是语音转文本?
使用语音转文本(也称为语音识别)功能,可将音频流实时听录为文本
。 应用程序、工具或设备可以使用、显示和处理此文本即命令输入
。
1)、服务构建:
1、创建一个资源
创建一个资源 |
2) JAVA开发环境准备,拉去github的Demo
这里我们使用过java的方式
步骤 |
克隆代码 |
导入项目 |
3)调用API测试
调用API测试 |
语音文件转文本 |
找了一首 梁静茹-我还记得 歌曲测试下,发现不行,可能还没这么智能,或者歌词太长了 |
麦克风转文本: |
package speechsdk.quickstart;
import com.microsoft.cognitiveservices.speech.*;
import com.microsoft.cognitiveservices.speech.audio.AudioConfig;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.Semaphore;
import static com.microsoft.cognitiveservices.speech.ResultReason.*;
/**
* @Classname Program
* @Description TODO
* @Date 2021/10/30 13:58
* @Created LiRuilong
*/
public class Program {
private static Semaphore stopTranslationWithFileSemaphore;
public static void main(String[] args) throws InterruptedException, ExecutionException {
SpeechConfig speechConfig = SpeechConfig.fromSubscription("eb48f918a90448fe***53633d6301ebb", "chinanorth2");
speechConfig.setSpeechRecognitionLanguage("zh-cn");
// 从文件中识别
// SpeechRecognitionResult result = fromFile(speechConfig);
// 从麦克风识别
SpeechRecognitionResult result = fromMic(speechConfig);
switch (result.getReason()) {
case RecognizedSpeech:
System.out.println("We recognized: " + result.getText());
break;
case NoMatch:
System.out.println("NOMATCH: 无法识别语音.");
break;
case Canceled: {
CancellationDetails cancellation = CancellationDetails.fromResult(result);
System.out.println("CANCELED: Reasnotallow=" + cancellation.getReason());
if (cancellation.getReason() == CancellationReason.Error) {
System.out.println("CANCELED: ErrorCode=" + cancellation.getErrorCode());
System.out.println("CANCELED: ErrorDetails=" + cancellation.getErrorDetails());
System.out.println("CANCELED: Did you update the subscription info?");
}
}
default:{};
break;
}
}
/**
* @param speechConfig:
* @return: void
* @Description 从麦克风识别
* @author LiRui long
* @date 2021/11/1 18:30
**/
public static SpeechRecognitionResult fromMic(SpeechConfig speechConfig) throws InterruptedException, ExecutionException {
AudioConfig audioConfig = AudioConfig.fromDefaultMicrophoneInput();
SpeechRecognizer recognizer = new SpeechRecognizer(speechConfig, audioConfig);
System.out.println("对这麦克风说话.");
Future<SpeechRecognitionResult> task = recognizer.recognizeOnceAsync();
SpeechRecognitionResult result = task.get();
return result;
}
/**
* @param speechConfig:
* @return: com.microsoft.cognitiveservices.speech.SpeechRecognitionResult
* @Description 从文件中识别
* @author LiRui long
* @date 2021/11/1 18:29
**/
public static SpeechRecognitionResult fromFile(SpeechConfig speechConfig) throws InterruptedException, ExecutionException {
AudioConfig audioConfig = AudioConfig.fromWavFileInput("E:\\docker\\cognitive-services-speech-sdk\\quickstart\\java\\jre\\translate-speech-to-text\\src\\speechsdk\\quickstart\\梁静茹-我还记得.wav");
SpeechRecognizer recognizer = new SpeechRecognizer(speechConfig, audioConfig);
// First initialize the semaphore.
stopTranslationWithFileSemaphore = new Semaphore(0);
recognizer.recognizing.addEventListener((s, e) -> {
System.out.println("RECOGNIZING: Text=" + e.getResult().getText());
});
recognizer.recognized.addEventListener((s, e) -> {
if (e.getResult().getReason() == RecognizedSpeech) {
System.out.println("RECOGNIZED: Text=" + e.getResult().getText());
}
else if (e.getResult().getReason() == NoMatch) {
System.out.println("NOMATCH: Speech could not be recognized.");
}
});
recognizer.canceled.addEventListener((s, e) -> {
System.out.println("CANCELED: Reasnotallow=" + e.getReason());
if (e.getReason() == CancellationReason.Error) {
System.out.println("CANCELED: ErrorCode=" + e.getErrorCode());
System.out.println("CANCELED: ErrorDetails=" + e.getErrorDetails());
System.out.println("CANCELED: Did you update the subscription info?");
}
stopTranslationWithFileSemaphore.release();
});
recognizer.sessionStopped.addEventListener((s, e) -> {
System.out.println("\n Session stopped event.");
stopTranslationWithFileSemaphore.release();
});
Future<SpeechRecognitionResult> task = recognizer.recognizeOnceAsync();
SpeechRecognitionResult result = task.get();
return result;
//System.out.println("RECOGNIZED: Text=" + result.getText());
}
}
四、什么是文本翻译
文本翻译是一种基于云的机器翻译服务,是 Azure 认知服务系列 REST API 的一部分。 翻译器可用于任何操作系统
1)、服务构建:
创建资源 |
2)Node环境调用API测试
这里我们用node
环境来测试一下;
$ docker pull node
$ mkdir translateDemo;cd translateDemo
$ vim translateDemo.js
测试js准备
const axios = require('axios').default;
const { v4: uuidv4 } = require('uuid');
let subscriptionKey = "3c6588c7026b41a4**7f81551cb4a737";
let endpoint = "https://api.translator.azure.cn/";
let location = "chinanorth";
axios({
baseURL: endpoint,
url: '/translate',
method: 'post',
headers: {
'Ocp-Apim-Subscription-Key': subscriptionKey,
'Ocp-Apim-Subscription-Region': location,
'Content-type': 'application/json',
'X-ClientTraceId': uuidv4().toString()
},
params: {
'api-version': '3.0',
'from': 'zh-Hans',
'to': ['zh-Hant', 'en']
},
data: [{
'text': '我徒然学会了抗拒热闹,却还来不及透悟真正的冷清。--------张大春'
}],
responseType: 'json'
}).then(function(response){
console.log(JSON.stringify(response.data, null, 4));
})
这里测试将 【我徒然学会了抗拒热闹,却还来不及透悟真正的冷清。--------张大春】中文简体翻译为中文繁体,英语。
┌──[root@liruilongs.github.io]-[~/translateDemo]
└─$ vim translateDemo.js
┌──[root@liruilongs.github.io]-[~/translateDemo]
└─$ docker run -it --rm --name=translateDemo -v $PWD/translateDemo.js:/root/translateDemo.js node:latest /bin/bash
root@35376c1c05d8:/# pwd
/
root@35376c1c05d8:/# cd root/;npm install axios uuid
added 3 packages, and audited 4 packages in 7s
1 package is looking for funding
run `npm fund` for details
found 0 vulnerabilities
root@35376c1c05d8:~# node translateDemo.js
[
{
"translations": [
{
"text": "我徒然學會了抗拒熱鬧,卻還來不及透悟真正的冷清。 --------張大春",
"to": "zh-Hant"
},
{
"text": "I learned in vain to resist the excitement, but it is too late to understand the real cold. -------- Zhang Dachun",
"to": "en"
}
]
}
]
root@35376c1c05d8:~#
时间原因,关于Azure认知服务免费提供的AI服务就尝试到这里,聊天机器人没有写出来哈,但是对Azure认知服务有一些了解,嘻,生活加油 ^ _ ^
标签:透悟,liruilong,github,浅尝,println,io,Azure,root From: https://blog.51cto.com/u_13474506/5931147