我们想象中一个场景,大学期末准备考试了,你前去图书馆临时抱佛脚。那么,在看书的时候,我们的大脑会思考问题,也会记忆知识点,另外我们通常也会把常用的书放在自己的桌子上,当我们要找一本不常用的书,则会去图书馆的书架找。
就是这么一个小小的场景,已经把计算机的存储结构基本都涵盖了。
我们可以把 CPU 比喻成我们的大脑,大脑正在思考的东西,就好比 CPU 中的寄存器,处理速度是最快的,但是能存储的数据也是最少的,毕竟我们也不能一下同时思考太多的事情,除非你练过。
我们大脑中的记忆,就好比 CPU Cache,中文称为 CPU 高速缓存,处理速度相比寄存器慢了一点,但是能存储的数据也稍微多了一些。
CPU Cache 通常会分为 L1、L2、L3 三层,其中 L1 Cache 通常分成「数据缓存」和「指令缓存」,L1 是距离 CPU 最近的,因此它比 L2、L3 的读写速度都快、存储空间都小。
我们大脑中短期记忆,就好比 L1 Cache,而长期记忆就好比 L2/L3 Cache。
寄存器和 CPU Cache 都是在 CPU 内部,跟 CPU 挨着很近,因此它们的读写速度都相当的快,但是能存储的数据很少,毕竟 CPU 就这么丁点大。
知道 CPU 内部的存储器的层次分布,我们放眼看看 CPU 外部的存储器。
当我们大脑记忆中没有资料的时候,可以从书桌或书架上拿书来阅读,那我们桌子上的书,就好比内存,我们虽然可以一伸手就可以拿到,但读写速度肯定远慢于寄存器,那图书馆书架上的书,就好比硬盘,能存储的数据非常大,但是读写速度相比内存差好几个数量级,更别说跟寄存器的差距了。
我们从图书馆书架取书,把书放到桌子上,再阅读书,我们大脑就会记忆知识点,然后再经过大脑思考,这一系列过程相当于,数据从硬盘加载到内存,再从内存加载到 CPU 的寄存器和 Cache 中,然后再通过 CPU 进行处理和计算。
对于存储器,它的速度越快、能耗会越高、而且材料的成本也是越贵的,以至于速度快的存储器的容量都比较小。
CPU 里的寄存器和 Cache,是整个计算机存储器中价格最贵的,虽然存储空间很小,但是读写速度是极快的,而相对比较便宜的内存和硬盘,速度肯定比不上 CPU 内部的存储器,但是能弥补存储空间的不足。
存储器通常可以分为这么几个级别:
- 寄存器;
- CPU Cache;
- L1-Cache;
- L2-Cache;
- L3-Cahce;
- 内存;
- SSD/HDD 硬盘
一、寄存器
最靠近 CPU 的控制单元和逻辑计算单元的存储器,就是寄存器了,它使用的材料速度也是最快的,因此价格也是最贵的,那么数量不能很多。
寄存器的数量通常在几十到几百之间,每个寄存器可以用来存储一定的字节(byte)的数据。比如:
- 32 位 CPU 中大多数寄存器可以存储
4
个字节; - 64 位 CPU 中大多数寄存器可以存储
8
个字节。
寄存器的访问速度非常快,一般要求在半个 CPU 时钟周期内完成读写,CPU 时钟周期跟 CPU 主频息息相关,比如 2 GHz 主频的 CPU,那么它的时钟周期就是 1/2G,也就是 0.5ns(纳秒)。
CPU 处理一条指令的时候,除了读写寄存器,还需要解码指令、控制指令执行和计算。如果寄存器的速度太慢,则会拉长指令的处理周期,从而给用户的感觉,就是电脑「很慢」。
二、CPU Cache
CPU Cache 用的是一种叫 SRAM(Static Random-Access Memory,静态随机存储器) 的芯片。
SRAM 之所以叫「静态」存储器,是因为只要有电,数据就可以保持存在,而一旦断电,数据就会丢失了。
在 SRAM 里面,一个 bit 的数据,通常需要 6 个晶体管,所以 SRAM 的存储密度不高,同样的物理空间下,能存储的数据是有限的,不过也因为 SRAM 的电路简单,所以访问速度非常快。
CPU 的高速缓存,通常可以分为 L1、L2、L3 这样的三层高速缓存,也称为一级缓存、二级缓存、三级缓存。
(一)L1 高速缓存
L1 高速缓存的访问速度几乎和寄存器一样快,通常只需要 2~4
个时钟周期,而大小在几十 KB 到几百 KB 不等。
每个 CPU 核心都有一块属于自己的 L1 高速缓存,指令和数据在 L1 是分开存放的,所以 L1 高速缓存通常分成指令缓存和数据缓存。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L1 Cache 「数据」缓存的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index0/size
32K
而查看 L1 Cache 「指令」缓存的容量大小,则是:
$ cat /sys/devices/system/cpu/cpu0/cache/index1/size
32K
(二)L2 高速缓存
L2 高速缓存同样每个 CPU 核心都有,但是 L2 高速缓存位置比 L1 高速缓存距离 CPU 核心 更远,它大小比 L1 高速缓存更大,CPU 型号不同大小也就不同,通常大小在几百 KB 到几 MB 不等,访问速度则更慢,速度在 10~20
个时钟周期。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L2 Cache 的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index2/size
256K
(三)L3 高速缓存
L3 高速缓存通常是多个 CPU 核心共用的,位置比 L2 高速缓存距离 CPU 核心 更远,大小也会更大些,通常大小在几 MB 到几十 MB 不等,具体值根据 CPU 型号而定。
访问速度相对也比较慢一些,访问速度在 20~60
个时钟周期。
在 Linux 系统,我们可以通过这条命令,查看 CPU 里的 L3 Cache 的容量大小:
$ cat /sys/devices/system/cpu/cpu0/cache/index3/size
3072K
三、内存
内存用的芯片和 CPU Cache 有所不同,它使用的是一种叫作 DRAM (Dynamic Random Access Memory,动态随机存取存储器) 的芯片。
相比 SRAM,DRAM 的密度更高,功耗更低,有更大的容量,而且造价比 SRAM 芯片便宜很多。
DRAM 存储一个 bit 数据,只需要一个晶体管和一个电容就能存储,但是因为数据会被存储在电容里,电容会不断漏电,所以需要「定时刷新」电容,才能保证数据不会被丢失,这就是 DRAM 之所以被称为「动态」存储器的原因,只有不断刷新,数据才能被存储起来。
DRAM 的数据访问电路和刷新电路都比 SRAM 更复杂,所以访问的速度会更慢,内存速度大概在 200~300
个 时钟周期之间。
四、SSD/HDD 硬盘
SSD(Solid-state disk) 就是我们常说的固体硬盘,结构和内存类似,但是它相比内存的优点是断电后数据还是存在的,而内存、寄存器、高速缓存断电后数据都会丢失。内存的读写速度比 SSD 大概快 10~1000
倍。
当然,还有一款传统的硬盘,也就是机械硬盘(Hard Disk Drive, HDD),它是通过物理读写的方式来访问数据的,因此它访问速度是非常慢的,它的速度比内存慢 10W
倍左右。
由于 SSD 的价格快接近机械硬盘了,因此机械硬盘已经逐渐被 SSD 替代了。
标签:存储器,L1,Cache,层次结构,内存,寄存器,CPU,高速缓存 From: https://www.cnblogs.com/imreW/p/16967106.html