首页 > 其他分享 >今日内容, 爬虫及Flask框架入门

今日内容, 爬虫及Flask框架入门

时间:2022-12-08 19:44:58浏览次数:49  
标签:return 入门 Flask redis request 爬虫 scrapy print

  • 加代理,cookie,header,加入selenium

加代理

# 在爬虫中间件中
   def get_proxy(self):
        import requests
        res=requests.get('http://192.168.1.143:5010/get/').json()
        if res.get('https'):
            return 'https://'+res.get('proxy')
        else:
            return 'http://' + res.get('proxy')
    def process_request(self, request, spider):
        # request 就是咱们在解析中yiedl的Request的对象
        # spider 就是爬虫对象
        ####1 加代理--->配置文件配置
        pro=self.get_proxy()
        request.meta['proxy'] = pro
        # 下载超时时间 download_timeout
        print(request.meta)
        return None
    
    
    
 ### 重点:如果中间件中出了异常,会调用中间件的process_exception
		-记录日志
    	-把当前爬取的request对象,return出去,会被引擎重新放回调度器,等待下次执行

加cookie,修改请求头,随机生成UserAgent

### 1  加cookie
print(request.cookies)
request.cookies['name']='pyy'
request.cookies=从cookie池中取出来的cookie



###2 修改请求头
# print(request.headers)
# request.headers['referer']='http://127.0.0.1:8000'



### 3 请求头中有user_agent,这个我们想每次都随机一个,而不是使用写死的
		-fake_useragent模块,可以随机生成user-aget
	    from fake_useragent import UserAgent
        ua = UserAgent()
        print(ua.ie)   #随机打印ie浏览器任意版本
        print(ua.firefox) #随机打印firefox浏览器任意版本
        print(ua.chrome)  #随机打印chrome浏览器任意版本
        print(ua.random)  #随机打印任意厂家的浏览器 
        
        
        from fake_useragent import UserAgent
        ua = UserAgent()
        request.headers['User-Agent'] = ua.random
        print(request.headers)

集成selenium

# 使用scrapy,爬取网页,本质跟使用requests模块是一样的,模拟发送http请求,有的网站,页面可能不是一次http请求返回的所有数据,会执行js,再发ajax,得到的所有数据,所有有的网页,咱们可以使用selenium去爬取



# 字符串和bytes相互转化
字符串转bytes  
	-方式一:lqz'.encode(encoding='utf-8')
    -方式二:bytest('字符串',encoding='utf-8')
bytes转字符串 
	-方式一:b'lqz'.decode(encoding='utf-8')
    -方式二:str('bytes格式',encoding='utf-8')
    
    
    
    
# 使用步骤:只用selenium爬取cnblogs的首页和下一页  (一旦使用selenium速度就慢)
	-第一步:在爬虫类的类属性中写
    class CnblogsSpider(scrapy.Spider):
        bro = webdriver.Chrome(executable_path='./chromedriver.exe')
    -第二步:在中间件中使用selenium爬取
       if request.meta.get('user_selenium'): #有的用,有的不用
            spider.bro.get(request.url)
            from scrapy.http import HtmlResponse
            response = HtmlResponse(url=request.url, body=bytes(spider.bro.page_source, encoding='utf-8'))
            return response
        else:
            return None
        
    -第三步:在爬虫类中关闭
     def close(self, spider, reason):
        self.bro.close()
  • 去重规则源码分析(布隆过滤器)

# scrapy 可以去重
# 研究去重的底层实现是如何实现的
	-我们想的话:把爬取过的网址,放在集合中,下次爬取之前,先看集合中有没有,如果有,就不爬了
    -源码在哪去的重?调度器---》调度器源码

# 源码 调度器的类:from scrapy.core.scheduler import Scheduler
	# 这个方法如果return True表示这个request要爬取,如果return表示这个网址就不爬了(已经爬过了)
    def enqueue_request(self, request: Request) -> bool:
        # request当次要爬取的地址对象
        if not request.dont_filter and self.df.request_seen(request):
            # 有的请情况,在爬虫中解析出来的网址,不想爬了,就就可以指定
            # yield Request(url=url, callback=self.detail_parse, meta={'item': item},dont_filter=True)
            # 如果符合这个条件,表示这个网址已经爬过了 
            return False
        return True
    
    -self.df 是去重类的对象 RFPDupeFilter
    -在配置文件中如果配置了:DUPEFILTER_CLASS = 'scrapy.dupefilters.RFPDupeFilter'表示,使用它作为去重类,按照它的规则做去重
    -RFPDupeFilter的request_seen
       def request_seen(self, request: Request) -> bool:
        # request_fingerprint 生成指纹
        fp = self.request_fingerprint(request) #request当次要爬取的地址对象
        #判断 fp 在不在集合中,如果在,return True
        if fp in self.fingerprints:
            return True
        #如果不在,加入到集合,return False
        self.fingerprints.add(fp)
        return False
    
    
    -生成指纹,指纹是什么?
    	-www.cnblogs.com?name=lqz&age=19
        -www.cnblogs.com?age=19&name=lqz
        -上面的两种地址生成的指纹是一样的
        # 测试指纹
        from scrapy.utils.request import RequestFingerprinter
        from scrapy import Request

        fingerprinter = RequestFingerprinter()
        request1 = Request(url='http://www.cnblogs.com?name=lqz&age=20')
        request2 = Request(url='http://www.cnblogs.com?age=19&name=lqz')

        res1 = fingerprinter.fingerprint(request1).hex()
        res2 = fingerprinter.fingerprint(request2).hex()
        print(res1)
        print(res2)
        

        
 # 总结:scrapy的去重规则
	-根据配置的去重类RFPDupeFilter的request_seen方法,如果返回True,就不爬了,如果返回False就爬
    -后期咱们可以使用自己定义的去重类,实现去重
    
    
 # 更小内存实现去重
	-如果是集合:存的数据库越多,占内存空间越大,如果数据量特别大,可以使用布隆过滤器实现去重

 # 布隆过滤器:https://zhuanlan.zhihu.com/p/94668361
	#bloomfilter:是一个通过多哈希函数映射到一张表的数据结构,能够快速的判断一个元素在一个集合内是否存在,具有很好的空间和时间效率。(典型例子,爬虫url去重)

	# 原理: BloomFilter 会开辟一个m位的bitArray(位数组),开始所有数据全部置 0 。当一个元素(www.baidu.com)过来时,能过多个哈希函数(h1,h2,h3....)计算不同的在哈希值,并通过哈希值找到对应的bitArray下标处,将里面的值 0 置为 1 。

    
    
    
   
# Python中使用布隆过滤器
# 测试布隆过滤器
# 可以自动扩容指定错误率,底层数组如果大于了错误率会自动扩容
# from pybloom_live import ScalableBloomFilter
# bloom = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, mode=ScalableBloomFilter.LARGE_SET_GROWTH)
# url = "www.cnblogs.com"
# url2 = "www.liuqingzheng.top"
# bloom.add(url)
# bloom.add(url2)
# print(url in bloom)
# print(url2 in bloom)

from pybloom_live import BloomFilter

bf = BloomFilter(capacity=10)
url = 'www.baidu.com'
bf.add(url)
bf.add('aaaa')
bf.add('ggg')
bf.add('deww')
bf.add('aerqaaa')
bf.add('ae2rqaaa')
bf.add('aerweqaaa')
bf.add('aerwewqaaa')
bf.add('aerereweqaaa')
bf.add('we')


print(url in bf)
print("wa" in bf)


# 重写scrapy的过滤类
  • scrapy-redis实现分布式爬虫

# 什么是分布式爬虫
	-原来使用一台机器爬取cnblogs整站
    -现在想使用3台机器爬取cnblogs整站
# 如果变成分布式,面临的问题
	-1 去重集合,我们要使用同一个----》redis集合
    -2 多台机器使用同一个调度器:Scheduler,排队爬取,使用同一个队列
    
    
# scrapy-redis 已经解决这个问题了,我只需要在我们单机基础上,改动一点,就变成了分布式爬虫
# 使用步骤
	第一步:安装scrapy-redis  ---》pip3 install scrapy-redis
    第二步:改造爬虫类
    from scrapy_redis.spiders import RedisSpider
    class CnblogSpider(RedisSpider):
        name = 'cnblog_redis'
        allowed_domains = ['cnblogs.com']
        # 写一个key:redis列表的key,起始爬取的地址
        redis_key = 'myspider:start_urls'
        
    第三步:配置文件配置
    # 分布式爬虫配置
    # 去重规则使用redis
    REDIS_HOST = 'localhost'                            # 主机名
    REDIS_PORT = 6379                                   # 端口
    DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" #看了源码
    SCHEDULER = "scrapy_redis.scheduler.Scheduler"   # 先进先出:队列,先进后出:栈
    # 持久化:文件,mysql,redis
    ITEM_PIPELINES = {
       'cnblogs.pipelines.CnblogsFilePipeline': 300,
       'cnblogs.pipelines.CnblogsMysqlPipeline': 100,
       'scrapy_redis.pipelines.RedisPipeline': 400,  #简单看
    }
    第四步:在多台机器上启动scrapy项目,在一台机器起了多个scrapy爬虫进程,就相当于多台机器
    	-进程,线程,协程。。。
        -进程间数据隔离 IPC
    
    第五步:把起始爬取的地址放到redis的列表中
    lpush mycrawler:start_urls http://www.cnblogs.com/
    
  • Flask介绍

# 目前python界,比较出名的web框架
	-django:大而全,web开发用的东西,它都有
    -Flask:小而精,只能完成请求与响应,session,cache,orm,admin。。。统统没有
    	-很多第三方框架,flask完全可以变成django
    -----同步框架----- django从3.x 改成了异步框架
    
    ----以下是异步框架--------
    -Tornado:非常少了,ptyhon2.x上,公司里用的多一些
    -Sanic : python 3.6 及以上
    -FastAPI
# Flask
Flask是一个基于Python开发并且依赖jinja2模板(模板语言)和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后触发Flask框架,开发人员基于Flask框架提供的功能对请求进行相应的处理,并返回给用户,如果要返回给用户复杂的内容时,需要借助jinja2模板来实现对模板的处理,即:将模板和数据进行渲染,将渲染后的字符串返回给用户浏览器。

“微”(micro) 并不表示你需要把整个 Web 应用塞进单个 Python 文件(虽然确实可以 ),也不意味着 Flask 在功能上有所欠缺。微框架中的“微”意味着 Flask 旨在保持核心简单而易于扩展。Flask 不会替你做出太多决策——比如使用何种数据库。而那些 Flask 所选择的——比如使用何种模板引擎——则很容易替换。除此之外的一切都由可由你掌握。如此,Flask 可以与您珠联璧合。

默认情况下,Flask 不包含数据库抽象层、表单验证,或是其它任何已有多种库可以胜任的功能。然而,Flask 支持用扩展来给应用添加这些功能,如同是 Flask 本身实现的一样。众多的扩展提供了数据库集成、表单验证、上传处理、各种各样的开放认证技术等功能。Flask 也许是“微小”的,但它已准备好在需求繁杂的生产环境中投入使用
  • Flask快速使用

# pip3 install flask     # 最新2.2.2


from flask import Flask

app = Flask(__name__)

# 注册路由
@app.route('/index')
def index():
    return '你看到我了'


if __name__ == '__main__':
    app.run(host='127.0.0.1',port=8080)

标签:return,入门,Flask,redis,request,爬虫,scrapy,print
From: https://www.cnblogs.com/tai-yang77/p/16967093.html

相关文章