首页 > 其他分享 >二叉树入门到进阶(下一篇讲红黑树)——c语言刷题合集

二叉树入门到进阶(下一篇讲红黑树)——c语言刷题合集

时间:2022-12-06 14:45:45浏览次数:72  
标签:黑树 node TreeNode struct val int 二叉树 讲红 root

目录

二叉树概念

二叉树的遍历方式

DFS(前序 中序 后序遍历)

144. 二叉树的前序遍历

递归解法

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

#define MAX_NUM 100

void PreTra(int *arr, int *returnSize, struct TreeNode *node)
{
    if (node == NULL) {
        return;
    }
    arr[(*returnSize)++] = node->val;
    PreTra(arr, returnSize, node->left);
    PreTra(arr, returnSize, node->right);
}

int* preorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize = 0;
    int *res = malloc(sizeof(int) * MAX_NUM);
    PreTra(res, returnSize, root);
    return res;
}

迭代解法

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

#define MAX_NUM 100

int* preorderTraversal(struct TreeNode* root, int* returnSize)
{
    int top = 0;
    struct TreeNode* stack[MAX_NUM];
    stack[top++] = root;
    struct TreeNode* node;

    int *res = malloc(sizeof(int) * MAX_NUM);
    *returnSize = 0;
    while (top != 0) {
        node = stack[--top];
        if (node == NULL) {
            break;
        }
        res[(*returnSize)++] = node->val;
        if (node->right != NULL) {
            stack[top++] = node->right;
        } 
        if (node->left != NULL) {
            stack[top++] = node->left;
        }
    }

    return res;
}   

94. 二叉树的中序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

#define MAX_NUM 100

void InorderTra(int *arr, int *returnSize, struct TreeNode *node)
{
    if (node == NULL) {
        return;
    }
    InorderTra(arr, returnSize, node->left);
    arr[(*returnSize)++] = node->val;
    InorderTra(arr, returnSize, node->right);
}

int* inorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize = 0;
    int *res = malloc(sizeof(int) * MAX_NUM);
    InorderTra(res, returnSize, root);
    return res;

}

145. 二叉树的后序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
#define MAX_NUM 100
void PostTra(int *arr, int *returnSize, struct TreeNode *node)
{
    if (node == NULL) {
        return;
    }
    PostTra(arr, returnSize, node->left);
    PostTra(arr, returnSize, node->right);
    arr[(*returnSize)++] = node->val;
}

int* postorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize = 0;
    int *res = malloc(sizeof(int) * MAX_NUM);
    PostTra(res, returnSize, root);
    return res;

}

层序遍历--队列的作用

102. 二叉树的层序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *returnColumnSizes array.
 * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
 */

#define MAX_LEN 2000

int** levelOrder(struct TreeNode* root, int* returnSize, int** returnColumnSizes)
{
    *returnSize = 0;
    if (root == NULL) {
        return NULL;
    }

    int **res = (int **)malloc(sizeof(int *) * MAX_LEN);
    *returnColumnSizes = (int *)malloc(sizeof(int) * MAX_LEN);

    struct TreeNode *node = root;
    struct TreeNode *list[MAX_LEN];
    int head, tail;
    head = 0, tail = 0;
    list[tail++] = node; // 第一次入队

    int lastTail, index;
    while (head != tail) {
        lastTail = tail;
        // 申请内存
        res[(*returnSize)] = malloc(sizeof(int) * (tail - head));
        (*returnColumnSizes)[(*returnSize)] = tail - head;
        index = 0;
        while (head < lastTail) {
            // 出队
            node = list[head++];
            res[(*returnSize)][index++] = node->val;
            if (node->left != NULL) {
                list[tail++] = node->left;
            }
            if (node->right != NULL) {
                list[tail++] = node->right;
            }
        }
        (*returnSize)++;
    }
    return res;
}

107. 二叉树的层序遍历 II

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *returnColumnSizes array.
 * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
 */

#define MAX_LEN 2001

int** levelOrderBottom(struct TreeNode* root, int* returnSize, int** returnColumnSizes)
{
    *returnSize = 0;
    if (root == NULL) {
        return NULL;
    }
    struct TreeNode *node = root;
    int **res = (int **)malloc(sizeof(int *) * MAX_LEN);
    *returnColumnSizes = (int *)malloc(sizeof(int) * MAX_LEN);

    int head, tail;
    head = 0, tail = 0;
    struct TreeNode *list[MAX_LEN];
    list[tail++] = node; // 第一次入栈 

    int lastTail, col;
    while (head != tail) {
        lastTail = tail;
        col = 0;
        // 申请内存
        res[(*returnSize)] = (int *)malloc(sizeof(int) * (tail - head)); // 开大一点
        (*returnColumnSizes)[(*returnSize)] = tail - head;
        while (head != lastTail) {
            node = list[head++];
            res[(*returnSize)][col++] = node->val;
            if (node->left != NULL) {
                list[tail++] = node->left;
            }
            if (node->right != NULL) {
                list[tail++] = node->right;
            }
        }
        (*returnSize)++;
    }

    // reverse
    int left, right, tmpNum;
    left = 0, right = (*returnSize) - 1;
    // printf("left %d, right %d\n", left, right);
    // int *tmp = malloc(sizeof(int) * MAX_LEN);
    while (left < right) {
        // memcpy(tmp, res[left], sizeof(int) * (*returnColumnSizes)[left]);
        // memcpy(res[left], res[right], sizeof(int) * (*returnColumnSizes)[right]);
        // memcpy(res[right], tmp, sizeof(int) * (*returnColumnSizes)[left]);
        int *tmp = res[left];
        res[left] = res[right];
        res[right] = tmp;

        tmpNum = (*returnColumnSizes)[left];
        (*returnColumnSizes)[left] = (*returnColumnSizes)[right];
        (*returnColumnSizes)[right] = tmpNum;

        left++;
        right--;
    }

    return res;
}

429. N 叉树的层序遍历

/**
 * Definition for a Node.
 * struct Node {
 *     int val;
 *     int numChildren;
 *     struct Node** children;
 * };
 */

/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *returnColumnSizes array.
 * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
 */

#define MAX_LEN 1001
#define MAX_HIGH 10001

int** levelOrder(struct Node* root, int* returnSize, int** returnColumnSizes) 
{
    int **res = (int **)malloc(sizeof(int *) * MAX_LEN);
    *returnColumnSizes = (int *)malloc(sizeof(int) * MAX_LEN);
    *returnSize = 0;
    if (root == NULL) {
        return res;
    }

    struct Node* node = root;
    struct Node *list[MAX_HIGH];
    int head, tail;
    head = 0, tail = 0;
    list[tail++] = node;
    
    int lastTail, col;
    while (head != tail) {
        col = 0;
        lastTail = tail;
        // 申请内存
        res[(*returnSize)] = malloc(sizeof(int) * (tail - head));
        (*returnColumnSizes)[(*returnSize)] = (tail - head);
        while (head != lastTail) {
            node = list[head++]; // 出队
            res[(*returnSize)][col++] = node->val;
            // 入队
            for (int j = 0; j < node->numChildren; j++) {
                list[tail++] = node->children[j];
            }
        }
        (*returnSize)++;
    }
    return res;
}

二叉搜索树

98. 验证二叉搜索树

graph graphname {
a -- b -- c;
b -- d;
}

  • 思路1:利用中序遍历,将二叉树转换为数组,然后判断数组是否有序

  • 思路2:直接在递归过程中,有两个指针模拟左(pre)->中(cur)->右,左->中(pre)->右(cur)

    • 陷阱:不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了,要比较的是左子树所有节点小于中间节点,右子树所有节点大于中间节点
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
 
bool isOk(struct TreeNode *cur, struct TreeNode **pre)
{
    if (cur == NULL) return true; // 先沉底

    bool left = isOk(cur->left, pre);
    if (*pre != NULL && (*pre)->val >= cur->val) {
        return false;
    }
    // if (*pre != NULL) printf("cur=%d, pre=%d\n", cur->val, (*pre)->val);
    *pre = cur;
    bool right = isOk(cur->right, pre);

    return left && right;
}

bool isValidBST(struct TreeNode* root)
{
    struct TreeNode *pre = NULL;
    return isOk(root, &pre);
}
  • 思路3:迭代法,用栈模拟递归压栈和弹栈的过程
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

#define MAX_NUM 10000

bool isValidBST(struct TreeNode* root)
{
    int top = 0;
    struct TreeNode *stack[MAX_NUM];
    struct TreeNode *cur = root;
    struct TreeNode *pre = NULL;

    // 用栈模拟 递归压栈和弹栈的过程
    while (cur != NULL || top != 0) {
        if (cur != NULL) {
            stack[top++] = cur; 
            cur = cur->left; // 左
        } else {
            cur = stack[--top];
            if (pre != NULL && pre->val >= cur->val) return false;
            pre = cur;

            cur = cur->right;
        }
    }
    return true;
}

700. 二叉搜索树中的搜索

  • 递归
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

struct TreeNode* searchBST(struct TreeNode* root, int val)
{
    if (root == NULL) return NULL;

    if (root->val == val) {
        return root;
    } else if (root->val > val) {
        return searchBST(root->left, val);
    } else {
        return searchBST(root->right, val);
    }

    return NULL;
}
  • 迭代法
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

struct TreeNode* searchBST(struct TreeNode* root, int val)
{
    while (root != NULL) {
        if (root->val == val) {
            return root;
        } else if (root->val > val) {
            root = root->left;
        } else {
            root = root->right;
        }
    }
    return NULL;
}

501. 二叉搜索树中的众数

  • 中序遍历1次搞定,不适用额外的空间:
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

int g_preVal, g_count, g_maxCount;
int g_resSize;
int *g_res;

void Update(int curVal)
{
    if (curVal == g_preVal) {
        g_count++;
    } else {
        g_preVal = curVal;
        g_count = 1;
    }

    if (g_count == g_maxCount) {
        g_res[g_resSize++] = curVal;
    }
    if (g_count > g_maxCount) {
        g_maxCount = g_count;
        g_resSize = 0;
        g_res[g_resSize++] = curVal;
    }
}

/* 中序遍历 */
void MidTravle(struct TreeNode *node)
{   
    if (node == NULL) return;
    MidTravle(node->left);
    Update(node->val);
    MidTravle(node->right);
}

int* findMode(struct TreeNode* root, int* returnSize)
{
    g_count = 0, g_maxCount = 0, g_resSize = 0;
    g_preVal = root->val;
    g_res = malloc(sizeof(int) * 10001);

    MidTravle(root);
    *returnSize = g_resSize;
    return g_res;
}
  • 使用hash表记录出现次数,使用了额外空间,并且还需要排序
struct HashTable {
    int num;
    int count;
    UT_hash_handle hh;
};

struct HashTable *g_hash;
int g_count = 0;

struct HashTable *FindeNode(int num)
{
    struct HashTable *tmp = NULL;
    HASH_FIND_INT(g_hash, &num, tmp);
    return tmp;
}

void AddNode(int num)
{
    struct HashTable *tmp = FindeNode(num);
    if (tmp == NULL) {
        g_count++;
        tmp = malloc(sizeof(struct HashTable));
        tmp->num = num;
        tmp->count = 1;
        HASH_ADD_INT(g_hash, num, tmp);
    } else {
        tmp->count++;
    }
}

void Func(struct TreeNode *node)
{
    if (node == NULL) return;
    AddNode(node->val);
    Func(node->left);
    Func(node->right);
}

int HashSort(struct HashTable *a, struct HashTable *b)
{
    return b->count - a->count;
}

int* findMode(struct TreeNode* root, int* returnSize)
{
    // 1、遍历整棵树
    // 2、记录每个数字出现的次数
    // 3、返回出现次数最高的数
    g_hash = NULL;
    
    Func(root);
    HASH_SORT(g_hash, HashSort);
    
    int n = g_hash->count;

    int *res = malloc(sizeof(int) * g_count);
    *returnSize = 0;

    struct HashTable *cur, *tmp;
    HASH_ITER(hh, g_hash, cur, tmp) {
        if (cur->count == n) {
            res[(*returnSize)++] = cur->num;
        }
        HASH_DEL(g_hash, cur);
        free(cur);
    }
    return res;
}

108. 将有序数组转换为二叉搜索树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

struct TreeNode *Func(int *arr, int len)
{
    if (len == 0) return;

    int mid = len / 2;
    struct TreeNode *node = malloc(sizeof(struct TreeNode));
    node->val = arr[mid];

    node->left = Func(arr, mid);
    node->right = Func(arr + mid + 1, len - mid - 1);

    return node;
}

struct TreeNode* sortedArrayToBST(int* nums, int numsSize)
{
    if (numsSize == 0) return NULL;

    struct TreeNode *root = Func(nums, numsSize);
    return root;
}

二叉树剪枝

450.删除二叉搜索树中的节点

  • 涉及到树结构的调整,较为复杂
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


struct TreeNode* deleteNode(struct TreeNode* root, int key)
{
    if (root == NULL) return NULL;

    if (root->val == key) {
        if (root->left == NULL && root->right == NULL) {
            free(root);
            return NULL;
        }
        if (root->left != NULL && root->right == NULL) {
            struct TreeNode *node = root->left;
            free(root);
            return node;
        }
        if (root->left == NULL && root->right != NULL) {
            struct TreeNode *node = root->right;
            free(root);
            return node;
        }
        // 左右孩子都非空
        struct TreeNode *left = root->left; // 左
        struct TreeNode *right = root->right; // 左
        struct TreeNode *node = right; // 左
        free(root);
        while (right->left != NULL) {
            right = right->left;
        }
        // 挂上
        right->left = left;
        return node;
    }

    if (root->val > key) {
        root->left = deleteNode(root->left, key);
    }
    if (root->val < key) {
        root->right = deleteNode(root->right, key);
    }

    return root;
}

回溯思想

236. 二叉树的最近公共祖先

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

 /*
 * 1.前序遍历
 * 2.左子树和右子树每颗树都完整的遍历1遍
 * 3.回溯,利用左子树和右子树的返回值,来判断最近公共祖先
 */
struct TreeNode* lowestCommonAncestor(struct TreeNode* root, struct TreeNode* p, struct TreeNode* q) 
{
    if (root == p || root == q || root == NULL) return root;
    
    struct TreeNode *left = lowestCommonAncestor(root->left, p, q);
    struct TreeNode *right = lowestCommonAncestor(root->right, p, q);

    if (left != NULL && right != NULL) return root;
    if (left == NULL && right != NULL) return right;
    return left;
}

235. 二叉搜索树的最近公共祖先

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

struct TreeNode* lowestCommonAncestor(struct TreeNode* root, struct TreeNode* p, struct TreeNode* q) 
{
    if (root == NULL || root == q || root == p) return root;

    int val = root->val;
    if (p->val < val && q->val < val) {
        return lowestCommonAncestor(root->left, p, q);
    } else if (p->val > val && q->val >val) {
        return lowestCommonAncestor(root->right, p, q);
    } else {
        return root;    
    }
}

二叉树中的插入操作

701.二叉搜索树中的插入操作

  • 递归解法
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


struct TreeNode* insertIntoBST(struct TreeNode* root, int val)
{
    if (root == NULL) {
        struct TreeNode *node = malloc(sizeof(struct TreeNode));
        node->val = val;
        node->left = NULL;
        node->right = NULL;
        root = node;
        return root;
    }

    if (root->val > val) {
        root->left = insertIntoBST(root->left, val);
    }
    if (root->val < val) {
        root->right = insertIntoBST(root->right, val);
    }

    return root;
}
  • 迭代解法
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


struct TreeNode* insertIntoBST(struct TreeNode* root, int val)
{
    struct TreeNode *node = root;
    struct TreeNode *add = malloc(sizeof(struct TreeNode));
    add->val = val;
    add->left = NULL;
    add->right = NULL;
    if (node == NULL) return add;

    while (node != NULL) {
        if (node->val > val && node->left == NULL) {
            node->left = add;
            break;
        }
        if (node->val < val && node->right == NULL) {
            node->right = add;
            break;
        }

        if (node->left != NULL && val < node->val) {
            node = node->left;
        }
        if (node->right != NULL && val > node->val) {
            node = node->right;
        }
    }
    return root;
}

构建二叉树

105. 从前序与中序遍历序列构造二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */


struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize)
{
    if (preorderSize == 0) return NULL;

    int leftSize, rightSize;
    struct TreeNode *node = malloc(sizeof(struct TreeNode));
    node->val = preorder[0];
    for (int i = 0; i < inorderSize; i++) {
        if (node->val == inorder[i]) {
            leftSize = i;
            break;
        }
    }
    rightSize = inorderSize - leftSize - 1;
    node->left = buildTree(preorder + 1, leftSize, inorder, leftSize);
    node->right = buildTree(preorder + 1 + leftSize, rightSize, inorder + leftSize + 1, rightSize);

    return node;
}

106. 从中序与后序遍历序列构造二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

int Search(int* inorder, int inorderSize, int target)
{
    for (int i = 0; i < inorderSize; i++) {
        if (target == inorder[i]) {
            return i;
        }
    }
    return -1;
}


struct TreeNode* buildTree(int* inorder, int inorderSize, int* postorder, int postorderSize)
{
    if (inorderSize == 0) {
        return NULL;
    }

    struct TreeNode *node = malloc(sizeof(struct TreeNode));
    node->val = postorder[postorderSize - 1];

    int index = Search(inorder, inorderSize, node->val);
    int rightSize = inorderSize - index - 1;
    int leftSize = index;
    node->left = buildTree(inorder, leftSize, postorder, leftSize);
    node->right = buildTree(inorder + index + 1, rightSize, postorder + leftSize, rightSize);

    return node;
}

108.将有序数组转换为二叉搜索树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

struct TreeNode *Func(int *arr, int len)
{
    if (len == 0) return;

    int mid = len / 2;
    struct TreeNode *node = malloc(sizeof(struct TreeNode));
    node->val = arr[mid];

    node->left = Func(arr, mid);
    node->right = Func(arr + mid + 1, len - mid - 1);

    return node;
}

struct TreeNode* sortedArrayToBST(int* nums, int numsSize)
{
    if (numsSize == 0) return NULL;

    struct TreeNode *root = Func(nums, numsSize);
    return root;
}

完全二叉树

  • 待补充

标签:黑树,node,TreeNode,struct,val,int,二叉树,讲红,root
From: https://www.cnblogs.com/kongweisi/p/16914237.html

相关文章

  • ChatGPT 编写的 Rust 二叉树
    //定义二叉树节点structNode{  //节点值  value:i32,  //左子树  left:Option<Box<Node>>,  //右子树  right:Option<Box<Node......
  • 根据前序和中序遍历重建二叉树
    关于最近最近在看算法相关的,接下来想记录一下自己学习的、个人认为比较值得记录的算法。这篇博客主要是用自己的理解复述了根据中序、前序遍历重建二叉树这个博客的内容,......
  • 二叉树基本操作代码实现
    #include<stdio.h>#include<stdlib.h>//exit#include<malloc.h>//定义二叉链表结点结构typedefstructnode{ intdata; structnode*lchild,*rchild;}BiTr......
  • leetcode 101. 对称二叉树 js实现
    给你一个二叉树的根节点 root ,检查它是否轴对称。示例1:输入:root=[1,2,2,3,4,4,3]输出:true示例2:输入:root=[1,2,2,null,3,null,3]输出:false 提示:树......
  • 求二叉树中最大的二叉搜索子树的头节点
    求二叉树中最大的二叉搜索子树的头节点作者:Grey原文地址:博客园:求二叉树中最大的二叉搜索子树的头节点CSDN:求二叉树中最大的二叉搜索子树的头节点题目描述给定一棵二......
  • 【LeeCode】94. 二叉树的中序遍历
    【题目描述】给定一个二叉树的根节点 ​​root​​ ,返回 它的 中序 遍历 。​​​https://leetcode.cn/problems/binary-tree-inorder-traversal/description/?favori......
  • 【LeeCode】104. 二叉树的最大深度
    【题目描述】给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。​​https://leetcode.cn/p......
  • 判断二叉树是否为满二叉树
    判断二叉树是否为满二叉树作者:Grey原文地址:博客园:判断二叉树是否为满二叉树CSDN:判断二叉树是否为满二叉树满二叉树定义一个二叉树,如果每一个层的结点数都达到最大值......
  • 二叉树中序遍历非递归算法实现 cpp
    二叉树中序遍历非递归算法实现#include<iostream>//二叉树中序遍历非递归算法实现usingnamespacestd;#defineMAXSIZE100/*不让用递归,那就用栈!!*///树的结点......
  • 剑指offer:二叉树中和为某一值的路径
    题目描述输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。/***Definiti......