常见性能优化实践总结
一:代码
这一点最容易引起技术人员的忽视。很多技术人员拿到一个性能优化的需求以后,言必称缓存、异步、JVM等。有一些性能问题,完全是由于代码写的不合理,通过直接修改一下代码就能解决问题的,比如for循环次数过多、作了很多无谓的条件判断、相同逻辑重复多次等。
二:数据库
数据库的调优,总的来说分为以下三部分:
SQL调优
这是最常用、每一个技术人员都应该掌握基本的SQL调优手段(包括方法、工具、辅助系统等)。这里以MySQL为例,最常见的方式是,由自带的慢查询日志或者开源的慢查询系统定位到具体的出问题的SQL,然后使用explain、profile等工具来逐步调优,最后经过测试达到效果后上线。这方面的细节,可以参考MySQL索引原理及慢查询优化。
架构调优
这一类调优包括读写分离、多从库负载均衡、水平和垂直分库分表等方面,一般需要的改动较大,但是频率没有SQL调优高,而且一般需要DBA来配合参与。那么什么时候需要做这些事情?
我们可以通过内部监控报警系统(比如Zabbix),定期跟踪一些指标数据是否达到瓶颈,一旦达到瓶颈或者警戒值,就需要考虑这些事情。通常,DBA也会定期监控这些指标值。
连接池调优
我们的应用为了实现数据库连接的高效获取、对数据库连接的限流等目的,通常会采用连接池类的方案,即每一个应用节点都管理了一个到各个数据库的连接池。
随着业务访问量或者数据量的增长,原有的连接池参数可能不能很好地满足需求,这个时候就需要结合当前使用连接池的原理、具体的连接池监控数据和当前的业务量作一个综合的判断,通过反复的几次调试得到最终的调优参数。
三:缓存
分类
本地缓存(HashMap/ConcurrentHashMap、Ehcache、Guava Cache等),缓存服务(Redis/Tair/Memcache等)。
使用场景
什么情况适合用缓存?考虑以下两种场景:
- 短时间内相同数据重复查询多次且数据更新不频繁,这个时候可以选择先从缓存查询,查询不到再从数据库加载并回设到缓存的方式。此种场景较适合用单机缓存。
- 高并发查询热点数据,后端数据库不堪重负,可以用缓存来扛。
选型考虑
如果数据量小,并且不会频繁地增长又清空(这会导致频繁地垃圾回收),那么可以选择本地缓存。
具体的话,如果需要一些策略的支持(比如缓存满的逐出策略),可以考虑Ehcache;如不需要,可以考虑HashMap;如需要考虑多线程并发的场景,可以考虑ConcurentHashMap。
其他情况,可以考虑缓存服务。目前从资源的投入度、可运维性、是否能动态扩容以及配套设施来考虑,我们优先考虑Tair。除非目前Tair还不能支持的场合(比如分布式锁、Hash类型的value),我们考虑用Redis。
设计关键点
什么时候更新缓存?如何保障更新的可靠性和实时性?
更新缓存的策略,需要具体问题具体分析。这里以门店POI的缓存数据为例,来说明一下缓存服务型的缓存更新策略是怎样的?目前约10万个POI数据采用了Tair作为缓存服务,具体更新的策略有两个:
- 接收门店变更的消息,准实时更新。
- 给每一个POI缓存数据设置5分钟的过期时间,过期后从DB加载再回设到DB。这个策略是对第一个策略的有力补充,解决了手动变更DB不发消息、接消息更新程序临时出错等问题导致的第一个策略失效的问题。通过这种双保险机制,有效地保证了POI缓存数据的可靠性和实时性。
缓存是否会满,缓存满了怎么办?
对于一个缓存服务,理论上来说,随着缓存数据的日益增多,在容量有限的情况下,缓存肯定有一天会满的。如何应对?
- ① 给缓存服务,选择合适的缓存逐出算法,比如最常见的LRU。
- ② 针对当前设置的容量,设置适当的警戒值,比如10G的缓存,当缓存数据达到8G的时候,就开始发出报警,提前排查问题或者扩容。
- ③ 给一些没有必要长期保存的key,尽量设置过期时间。
缓存是否允许丢失?丢失了怎么办?
根据业务场景判断,是否允许丢失。如果不允许,就需要带持久化功能的缓存服务来支持,比如Redis或者Tair。更细节的话,可以根据业务对丢失时间的容忍度,还可以选择更具体的持久化策略,比如Redis的RDB或者AOF。
缓存被“击穿”问题
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑另外一个问题:缓存被“击穿”的问题。
概念:缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
如何解决:业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。
四:异步
使用场景
针对某些客户端的请求,在服务端可能需要针对这些请求做一些附属的事情,这些事情其实用户并不关心或者用户不需要立即拿到这些事情的处理结果,这种情况就比较适合用异步的方式处理这些事情。
作用
缩短接口响应时间,使用户的请求快速返回,用户体验更好。
避免线程长时间处于运行状态,这样会引起服务线程池的可用线程长时间不够用,进而引起线程池任务队列长度增大,从而阻塞更多请求任务,使得更多请求得不到技术处理。
线程长时间处于运行状态,可能还会引起系统Load、CPU使用率、机器整体性能下降等一系列问题,甚至引发雪崩。异步的思路可以在不增加机器数和CPU数的情况下,有效解决这个问题。
常见做法
一种做法,是额外开辟线程,这里可以采用额外开辟一个线程或者使用线程池的做法,在IO线程(处理请求响应)之外的线程来处理相应的任务,在IO线程中让response先返回。
如果异步线程处理的任务设计的数据量非常巨大,那么可以引入阻塞队列BlockingQueue作进一步的优化。具体做法是让一批异步线程不断地往阻塞队列里扔数据,然后额外起一个处理线程,循环批量从队列里拿预设大小的一批数据,来进行批处理(比如发一个批量的远程服务请求),这样进一步提高了性能。
另一种做法,是使用消息队列(MQ)中间件服务,MQ天生就是异步的。一些额外的任务,可能不需要我这个系统来处理,但是需要其他系统来处理。这个时候可以先把它封装成一个消息,扔到消息队列里面,通过消息中间件的可靠性保证把消息投递到关心它的系统,然后让这个系统来做相应的处理。
比如C端在完成一个提单动作以后,可能需要其它端做一系列的事情,但是这些事情的结果不会立刻对C端用户产生影响,那么就可以先把C端下单的请求响应先返回给用户,返回之前往MQ中发一个消息即可。而且这些事情理应不是C端的负责范围,所以这个时候用MQ的方式,来解决这个问题最合适。
五:JVM调优
什么时候调?
通过监控系统(如没有现成的系统,自己做一个简单的上报监控的系统也很容易)上对一些机器关键指标(gc time、gc count、各个分代的内存大小变化、机器的Load值与CPU使用率、JVM的线程数等)的监控报警,也可以看gc log和jstat等命令的输出,再结合线上JVM进程服务的一些关键接口的性能数据和请求体验,基本上就能定位出当前的JVM是否有问题,以及是否需要调优。
怎么调?
如果发现高峰期CPU使用率与Load值偏大,这个时候可以观察一些JVM的thread count以及gc count(可能主要是young gc count),如果这两个值都比以往偏大(也可以和一个历史经验值作对比),基本上可以定位是young gc频率过高导致,这个时候可以通过适当增大young区大小或者占比的方式来解决。
如果发现关键接口响应时间很慢,可以结合gc time以及gc log中的stop the world的时间,看一下整个应用的stop the world的时间是不是比较多。如果是,可能需要减少总的gc time,具体可以从减小gc的次数和减小单次gc的时间这两个维度来考虑,一般来说,这两个因素是一对互斥因素,我们需要根据实际的监控数据来调整相应的参数(比如新生代与老生代比值、eden与survivor比值、MTT值、触发cms回收的old区比率阈值等)来达到一个最优值。
如果发生full gc或者old cms gc非常频繁,通常这种情况会诱发STW的时间相应加长,从而也会导致接口响应时间变慢。这种情况,大概率是出现了“内存泄露”,Java里的内存泄露指的是一些应该释放的对象没有被释放掉(还有引用拉着它)。那么这些对象是如何产生的呢?为啥不会释放呢?对应的代码是不是出问题了?问题的关键是搞明白这个,找到相应的代码,然后对症下药。
所以问题的关键是转化成寻找这些对象。怎么找?综合使用jmap和MAT,基本就能定位到具体的代码。
六:多线程与分布式
使用场景
离线任务、异步任务、大数据任务、耗时较长任务的运行**,适当地利用,可达到加速的效果。
注意:线上对响应时间要求较高的场合,尽量少用多线程,尤其是服务线程需要等待任务线程的场合(很多重大事故就是和这个息息相关),如果一定要用,可以对服务线程设置一个最大等待时间。
常见做法
如果单机的处理能力可以满足实际业务的需求,那么尽可能地使用单机多线程的处理方式,减少复杂性;反之,则需要使用多机多线程的方式。
对于单机多线程,可以引入线程池的机制,作用有二:
- 提高性能,节省线程创建和销毁的开销
- 限流,给线程池一个固定的容量,达到这个容量值后再有任务进来,就进入队列进行排队,保障机器极限压力下的稳定处理能力在使用JDK自带的线程池时,一定要仔细理解构造方法的各个参数的含义,如core pool size、max pool size、keepAliveTime、worker queue等,在理解的基础上通过不断地测试调整这些参数值达到最优效果。
如果单机的处理能力不能满足需求,这个时候需要使用多机多线程的方式。这个时候除了有多线程、线程池等机制,像RPC、心跳等网络通信调用的机制也不可少。
七:度量系统(监控、报警、服务依赖管理)
严格来说,度量系统不属于性能优化的范畴,但它是系统稳定性和性能保障的基石。
关键流程
如果要设计这套系统,总体来说有哪些关键流程需要设计呢?
- ① 确定指标
- ② 采集数据
- ③ 计算数据,存储结果
- ④ 展现和分析
需要监控和报警哪些指标数据?需要关注哪些?
按照需求出发,主要需要二方面的指标:
- 接口性能相关,包括单个接口和全部的QPS、响应时间、调用量(统计时间维度越细越好;最好是,既能以节点为维度,也可以以服务集群为维度,来查看相关数据)。其中还涉及到服务依赖关系的管理,这个时候需要用到服务依赖管理系统
- 单个机器节点相关,包括CPU使用率、Load值、内存占用率、网卡流量等。如果节点是一些特殊类型的服务(比如MySQL、Redis、Tair),还可以监控这些服务特有的一些关键指标。
数据库索引的原理和如何优化慢查询
我们知道一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,所以查询语句的优化显然是重中之重。
导致数据查询慢的原因有多种,如:缓存失效,在此一段时间内由于高并发访问导致 MySQL 服务器崩溃;SQL 语句编写问题;MySQL 服务器参数问题;硬件配置限制 MySQL 服务性能问题等。
一:查看 MySQL 服务器运行的状态值
如果系统的并发请求数不高,且查询速度慢,可以忽略该步骤直接进行 SQL 语句调优步骤。
show status
我们可以通过执行如下脚本监控 MySQL 服务器运行的状态值
#!/bin/bash
while true
do
mysqladmin -uroot -p"密码" ext | awk '/Queries/{q=$4}/Threads_connected/{c=$4}/Threads_running/{r=$4}END{printf("%d %d %d\n",q,c,r)}' >> status.txt
sleep 1
done
执行该脚本 24 小时,获取 status.txt 里的内容,再次通过 awk 计算每秒请求 MySQL 服务的次数
awk '{q=$1-last;last=$1}{printf("%d %d %d\n",q,$2,$3)}' status.txt
复制计算好的内容到 Excel 中生成图表观察数据周期性。
如果观察的数据有周期性的变化,如上图的解释,需要修改缓存失效策略。
例如:
通过随机数在[3,6,9] 区间获取其中一个值作为缓存失效时间,这样分散了缓存失效时间,从而节省了一部分内存的消耗。
当访问高峰期时,一部分请求分流到未失效的缓存,另一部分则访问 MySQL 数据库,这样减少了 MySQL 服务器的压力。
二:获取需要优化的 SQL 语句
2.1 方式一:查看运行的线程
show processlist
mysql> show processlist;
+----+------+-----------+------+---------+------+----------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+------+-----------+------+---------+------+----------+------------------+
| 9 | root | localhost | test | Query | 0 | starting | show processlist |
+----+------+-----------+------+---------+------+----------+------------------+
1 row in set (0.00 sec)
从返回结果中我们可以了解该线程执行了什么命令/SQL 语句以及执行的时间。实际应用中,查询的返回结果会有 N 条记录。
其中,返回的 State 的值是我们判断性能好坏的关键,其值出现如下内容,则该行记录的 SQL 语句需要优化:
Converting HEAP to MyISAM # 查询结果太大时,把结果放到磁盘,严重
Create tmp table #创建临时表,严重
Copying to tmp table on disk #把内存临时表复制到磁盘,严重
locked #被其他查询锁住,严重
loggin slow query #记录慢查询
Sorting result #排序
2.2 方式二:开启慢查询日志
在配置文件 my.cnf 中的 [mysqld] 一行下边添加两个参数:
slow_query_log = 1
slow_query_log_file=/var/lib/mysql/slow-query.log
long_query_time = 2
log_queries_not_using_indexes = 1
其中,slowquerylog = 1 表示开启慢查询;slowquerylogfile 表示慢查询日志存放的位置;longquerytime = 2 表示查询 >=2 秒才记录日志;logqueriesnotusing_indexes = 1 记录没有使用索引的 SQL 语句。
注意:slowquerylog_file 的路径不能随便写,否则 MySQL 服务器可能没有权限将日志文件写到指定的目录中。建议直接复制上文的路径。
修改保存文件后,重启 MySQL 服务。在 /var/lib/mysql/ 目录下会创建 slow-query.log 日志文件。连接 MySQL 服务端执行如下命令可以查看配置情况。
show variables like 'slow_query%';
show variables like 'long_query_time';
测试
mysql> select sleep(2);
+----------+
| sleep(2) |
+----------+
| 0 |
+----------+
1 row in set (2.00 sec)
打开慢查询日志
[root@localhost mysql]# vim /var/lib/mysql/slow-query.log
/usr/sbin/mysqld, Version: 5.7.19-log (MySQL Community Server (GPL)). started with:
Tcp port: 0 Unix socket: /var/lib/mysql/mysql.sock
Time Id Command Argument
# Time: 2017-10-05T04:39:11.408964Z
# User@Host: root[root] @ localhost [] Id: 3
# Query_time: 2.001395 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use test;
SET timestamp=1507178351;
select sleep(2);
我们可以看到刚才执行了 2 秒的 SQL 语句被记录下来了。
虽然在慢查询日志中记录查询慢的 SQL 信息,但是日志记录的内容密集且不易查阅。因此,我们需要通过工具将 SQL 筛选出来。
MySQL 提供 mysqldumpslow 工具对日志进行分析。我们可以使用 mysqldumpslow --help 查看命令相关用法。
常用参数如下:
-s:排序方式,后边接着如下参数
c:访问次数
l:锁定时间
r:返回记录
t:查询时间
al:平均锁定时间
ar:平均返回记录书
at:平均查询时间
-t:返回前面多少条的数据
-g:翻遍搭配一个正则表达式,大小写不敏感
案例
获取返回记录集最多的10个sql
mysqldumpslow -s r -t 10 /var/lib/mysql/slow-query.log
获取访问次数最多的10个sql
mysqldumpslow -s c -t 10 /var/lib/mysql/slow-query.log
获取按照时间排序的前10条里面含有左连接的查询语句
mysqldumpslow -s t -t 10 -g "left join" /var/lib/mysql/slow-query.log
三:分析 SQL 语句
3.1 方式一:explain
筛选出有问题的 SQL,我们可以使用 MySQL 提供的 explain 查看 SQL 执行计划情况(关联表,表查询顺序、索引使用情况等)。
用法:
explain select * from category;
返回结果:
mysql> explain select * from category;
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
| 1 | SIMPLE | category | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | NULL |
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
字段解释:
1) id:select 查询序列号。id相同,执行顺序由上至下;id不同,id值越大优先级越高,越先被执行
2) select_type:查询数据的操作类型,其值如下:
simple:简单查询,不包含子查询或 union
primary:包含复杂的子查询,最外层查询标记为该值
subquery:在 select 或 where 包含子查询,被标记为该值
derived:在 from 列表中包含的子查询被标记为该值,MySQL 会递归执行这些子查询,把结果放在临时表
union:若第二个 select 出现在 union 之后,则被标记为该值。若 union 包含在 from 的子查询中,外层 select 被标记为 derived
union result:从 union 表获取结果的 select
3) table:显示该行数据是关于哪张表
4) partitions:匹配的分区
5) type:表的连接类型,其值,性能由高到底排列如下:
system:表只有一行记录,相当于系统表
const:通过索引一次就找到,只匹配一行数据
eq_ref:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常用于主键或唯一索引扫描
ref:非唯一性索引扫描,返回匹配某个单独值的所有行。用于=、< 或 > 操作符带索引的列
range:只检索给定范围的行,使用一个索引来选择行。一般使用between、>、<情况
index:只遍历索引树
ALL:全表扫描,性能最差
注:前5种情况都是理想情况的索引使用情况。通常优化至少到range级别,最好能优化到 ref
6) possible_keys:指出 MySQL 使用哪个索引在该表找到行记录。如果该值为 NULL,说明没有使用索引,可以建立索引提高性能
7) key:显示 MySQL 实际使用的索引。如果为 NULL,则没有使用索引查询
8) key_len:表示索引中使用的字节数,通过该列计算查询中使用的索引的长度。在不损失精确性的情况下,长度越短越好 显示的是索引字段的最大长度,并非实际使用长度
9) ref:显示该表的索引字段关联了哪张表的哪个字段
10) rows:根据表统计信息及选用情况,大致估算出找到所需的记录或所需读取的行数,数值越小越好
11) filtered:返回结果的行数占读取行数的百分比,值越大越好
12) extra:包含不合适在其他列中显示但十分重要的额外信息,常见的值如下:
using filesort:说明 MySQL 会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。出现该值,应该优化 SQL
using temporary:使用了临时表保存中间结果,MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。出现该值,应该优化 SQL
using index:表示相应的 select 操作使用了覆盖索引,避免了访问表的数据行,效率不错
using where:where 子句用于限制哪一行
using join buffer:使用连接缓存
distinct:发现第一个匹配后,停止为当前的行组合搜索更多的行
注意:出现前 2 个值,SQL 语句必须要优化。
3.2 方式二:profiling
使用 profiling 命令可以了解 SQL 语句消耗资源的详细信息(每个执行步骤的开销)。
3.2.1 查看 profile 开启情况
select @@profiling;
mysql> select @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)
0 表示关闭状态,1 表示开启
3.2.2 启用 profile
set profiling = 1;
mysql> set profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select @@profiling;
+-------------+
| @@profiling |
+-------------+
| 1 |
+-------------+
1 row in set, 1 warning (0.00 sec)
在连接关闭后,profiling 状态自动设置为关闭状态。
3.2.3 查看执行的 SQL 列表
show profiles;
mysql> show profiles;
+----------+------------+------------------------------+
| Query_ID | Duration | Query |
+----------+------------+------------------------------+
| 1 | 0.00062925 | select @@profiling |
| 2 | 0.00094150 | show tables |
| 3 | 0.00119125 | show databases |
| 4 | 0.00029750 | SELECT DATABASE() |
| 5 | 0.00025975 | show databases |
| 6 | 0.00023050 | show tables |
| 7 | 0.00042000 | show tables |
| 8 | 0.00260675 | desc role |
| 9 | 0.00074900 | select name,is_key from role |
+----------+------------+------------------------------+
9 rows in set, 1 warning (0.00 sec)
该命令执行之前,需要执行其他 SQL 语句才有记录
3.2.4 查询指定 ID 的执行详细信息
show profile for query Query_ID;
mysql> show profile for query 9;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
| starting | 0.000207 |
| checking permissions | 0.000010 |
| Opening tables | 0.000042 |
| init | 0.000050 |
| System lock | 0.000012 |
| optimizing | 0.000003 |
| statistics | 0.000011 |
| preparing | 0.000011 |
| executing | 0.000002 |
| Sending data | 0.000362 |
| end | 0.000006 |
| query end | 0.000006 |
| closing tables | 0.000006 |
| freeing items | 0.000011 |
| cleaning up | 0.000013 |
+----------------------+----------+
15 rows in set, 1 warning (0.00 sec)
每行都是状态变化的过程以及它们持续的时间。Status 这一列和 show processlist 的 State 是一致的。因此,需要优化的注意点与上文描述的一样。
3.2.5 获取 CPU、 Block IO 等信息
show profile block io,cpu for query Query_ID;
show profile cpu,block io,memory,swaps,context switches,source for query Query_ID;
show profile all for query Query_ID;
四:优化方式
主要以查询优化、索引使用和表结构设计方面进行讲解。
4.1 查询优化
避免 SELECT *,需要什么数据,就查询对应的字段。
小表驱动大表,即小的数据集驱动大的数据集。如:以 A,B 两表为例,两表通过 id 字段进行关联。
当 B 表的数据集小于 A 表时,用 in 优化 exist;使用 in ,两表执行顺序是先查 B 表,再查 A 表
select * from A where id in (select id from B)
当 A 表的数据集小于 B 表时,用 exist 优化 in;使用 exists,两表执行顺序是先查 A 表,再查 B 表
select * from A where exists (select 1 from B where B.id = A.id)
一些情况下,可以使用连接代替子查询,因为使用 join,MySQL 不会在内存中创建临时表。
适当添加冗余字段,减少表关联。
合理使用索引(下文介绍)。如:为排序、分组字段建立索引,避免 filesort 的出现。
4.2 索引使用
4.2.1 适合使用索引的场景
- 主键自动创建唯一索引
- 频繁作为查询条件的字段
- 查询中与其他表关联的字段
- 查询中排序的字段
- 查询中统计或分组字段
4.2.2 不适合使用索引的场景
- 频繁更新的字段
- where 条件中用不到的字段
- 表记录太少
- 经常增删改的表
- 字段的值的差异性不大或重复性高
4.2.3 索引创建和使用原则
- 单表查询:哪个列作查询条件,就在该列创建索引
- 多表查询:left join 时,索引添加到右表关联字段;right join 时,索引添加到左表关联字段
- 不要对索引列进行任何操作(计算、函数、类型转换)
- 索引列中不要使用 !=,<> 非等于
- 索引列不要为空,且不要使用 is null 或 is not null 判断
- 索引字段是字符串类型,查询条件的值要加''单引号,避免底层类型自动转换
4.3 数据库表结构设计
4.3.1 选择合适的数据类型
- 使用可以存下数据最小的数据类型
- 使用简单的数据类型。int 要比 varchar 类型在mysql处理简单
- 尽量使用 tinyint、smallint、mediumint 作为整数类型而非 int
- 尽可能使用 not null 定义字段,因为 null 占用4字节空间
- 尽量少用 text 类型,非用不可时最好考虑分表
- 尽量使用 timestamp 而非 datetime
- 单表不要有太多字段,建议在 20 以内
4.3.2 表的拆分
当数据库中的数据非常大时,查询优化方案也不能解决查询速度慢的问题时,我们可以考虑拆分表,让每张表的数据量变小,从而提高查询效率。
垂直拆分:将表中多个列分开放到不同的表中。例如用户表中一些字段经常被访问,将这些字段放在一张表中,另外一些不常用的字段放在另一张表中。插入数据时,使用事务确保两张表的数据一致性。
水平拆分:按照行进行拆分。例如用户表中,使用用户ID,对用户ID取10的余数,将用户数据均匀的分配到0~9的10个用户表中。查找时也按照这个规则查询数据。
4.3.3 读写分离
一般情况下对数据库而言都是“读多写少”。换言之,数据库的压力多数是因为大量的读取数据的操作造成的。我们可以采用数据库集群的方案,使用一个库作为主库,负责写入数据;其他库为从库,负责读取数据。这样可以缓解对数据库的访问压力。
五:小结
b+树性质
1.我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。
这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
建索引的几大原则
七字口诀就是:
模 型 数 空 运 最 快
-
模:模糊查询的意思。like的模糊查询以%开头,索引失效。
-
型:代表数据类型。类型错误,如字段类型为varchar,where条件用number,索引也会失效。
比如:
SELECT * FROM `user` WHERE height= 180;
height为varchar类型导致索引失效。
- 数:是函数的意思。对索引的字段使用内部函数,索引也会失效。
这种情况下应该建立基于函数的索引。比如:
SELECT * FROM `user` WHERE DATE(create_time) = '2022-08-26';
create_time字段设置索引,那就无法使用函数,否则索引失效。
-
空:是Null的意思。索引不存储空值,如果不限制索引列是not null,数据库会认为索引列有可能存在空值,所以不会按照索引进行计算。
-
运:是运算的意思。对索引列进行(+,-,*,/,!, !=, <>)等运算,会导致索引失效。
-
最:是最左原则。在复合索引中索引列的顺序至关重要。如果不是按照索引的最左列开始查找,则无法使用索引。
-
快:全表扫描更快的意思。如果数据库预计使用全表扫描要比使用索引快,则不使用索引。
慢查询优化基本步骤
- 0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
- 1.where条件单表查,锁定最小返回记录表。
- 2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
- 3.order by limit 形式的sql语句让排序的表优先查
- 4.了解业务方使用场景
- 5.加索引时参照建索引的几大原则
- 6.观察结果,不符合预期继续从0分析