首页 > 其他分享 >ElasticSearch

ElasticSearch

时间:2022-12-02 13:34:34浏览次数:66  
标签:name 查询 索引 elasticsearch new ElasticSearch query

`ElasticSearch

1. 什么是ElasticSearch

ElasticSearch 简称 ES是基于Apache Lucene构建的开源搜索引擎,是当前流行的企业级搜索引擎(分布式搜索引擎)。Lucene本身就可以被认为迄今为止性能最好的一款开源搜索引擎工具包,但是lucene的API相对复杂,需要深厚的搜索理论。很难集成到实际的应用中去。同时ES是采用java语言编写,提供了简单易用的RestFul API,开发者可以使用其简单的RestFul API,开发相关的搜索功能,从而避免lucene的复杂性。 搜索检索 数据库like

2. 什么是RestFul

REST : 表现层状态转化(Representational State Transfer),如果一个架构符合REST原则,就称它为 RESTful 架构风格。

**资源(Resources): 所谓"资源",就是网络上的一个实体,或者说是网络上的一个具体信息

表现层(Representation) :我们把"资源"具体呈现出来的形式,叫做它的"表现层"。

状态转化(State Transfer):如果客户端想要操作服务器,必须通过某种手段,让服务器端发生"状态转 化"(State Transfer)。而这种转化是建立在表现层之上的,所以就是"表现层状态转化"。

REST原则就是指一个URL代表一个唯一资源,并且通过HTTP协议里面四个动词:GET、POST、PUT、DELETE对应四种服务器端的基本操作: GET用来获取资源,POST用来更新资源(也可以用于添加资源),PUT用来添加资源(也可以用于更新资源),DELETE用来删除资源。

3. 什么是全文检索

全文检索是计算机程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置。当用户查询时根据建立的索引查找,类似于通过字典的检索字表查字的过程。

全文检索(Full-Text Retrieval(检索))以文本作为检索对象,找出含有指定词汇的文本。全面、准确和快速是衡量全文检索系统的关键指标。

关于全文检索,我们要知道:

** 1. 只处理文本。**

2. 不处理语义。

3. 搜索时英文不区分大小写。

4. 结果列表有相关度排序。


4. ES的诞生

多年前,一个叫做Shay Banon 的刚结婚不久的失业开发者,由于妻子要去伦敦学习厨师,他便跟着也去了。在他找工作的过程中,为了给妻子构建一个食谱的搜索引擎,他开始构建一个早期版本的Lucene。

直接基于Lucene工作会比较困难,所以Shay开始抽象Lucene代码以便Java程序员可以在应用中添加搜索功能。他发布了他的第一个开源项目,叫做“Compass”。

后来Shay找到一份工作,这份工作处在高性能和内存数据网格的分布式环境中,因此高性能的、实时的、分布式的搜索引擎也是理所当然需要的。然后他决定重写Compass库使其成为一个独立的服务叫做Elasticsearch。

第一个公开版本出现在2010年2月,在那之后Elasticsearch已经成为Github上最受欢迎的项目之一,代码贡献者超过300人。一家主营Elasticsearch的公司就此成立,他们一边提供商业支持一边开发新功能,不过Elasticsearch将永远开源且对所有人可用。

Shay的妻子依旧等待着她的食谱搜索……


5. ES的应用场景 json格式数据 restful

Es主要以轻量级JSON作为数据存储格式,这点与MongoDB有点类似,但它在读写性能上优于 MongoDB 。同时也支持地理位置查询 ,还方便地理位置和文本混合查询 。 以及在统计、日志类数据存储和分析、可视化这方面是引领者。

国外:

Wikipedia(维基百科)使用ES提供全文搜索并高亮关键字、StackOverflow(IT问答网站)结合全文搜索与地理位置查询、Github使用Elasticsearch检索1300亿行的代码。

国内:

百度(在云分析、网盟、预测、文库、钱包、风控等业务上都应用了ES,单集群每天导入30TB+数据, 总共每天60TB+)、新浪 、阿里巴巴、腾讯等公司均有对ES的使用。

使用比较广泛的平台ELK(ElasticSearch 全文检索服务器 核心, Logstash, Kibana)。

6. ES的安装

# 0. 安装前准备
	centos7 +
	java 8  +
	elastic 7.6.0+

# 1. 在官方网站下载ES
		wget http://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.6.0.tar.gz

# 2. 安装JDK(必须JDK1.8+)
		rpm -ivh jdk-8u181-linux-x64.rpm
			/*注意:默认安装位置 /usr/java/jdk1.8.0_171-amd64*/

# 3. 配置环境变量
	vim /etc/profile
	在文件末尾加入:
		export JAVA_HOME=/usr/java/jdk1.8.0_171-amd64
		export PATH=$PATH:$JAVA_HOME/bin

# 4. 重载系统配置
		source /etc/profile

# 5.创建普通用户(es不能作为root用户启动)
		a.在linux系统中创建新的组
			groupadd es

		b.创建新的用户es并将es用户放入es组中
			useradd es -g es 

		c.修改es用户密码
			passwd es

# 6.上传es到普通用户的家目录,并安装elasticsearch
		tar -zxvf elasticsearch-7.6.0.tar.gz

# 7. elasticsearche的目录结构
        bin                         可执行的二进制文件的目录
        config                    	配置文件的目录
        lib                         运行时依赖的库
        logs  modules       		运行时日志文件
        plugins                   	es中提供的插件

# 8. 运行es服务
		在bin目录中执行   ./elasticsearch

		
# 9. 测试ES是否启动成功
	在命令终端中执行: curl http://localhost:9200 出现以下信息:
		{
          "name" : "xQK1cwT",
          "cluster_name" : "elasticsearch",
          "cluster_uuid" : "t7IYk7LKQ0mXcyyrdFWpLg",
          "version" : {
            "number" : "7.6.0",
            "build_hash" : "ccec39f",
            "build_date" : "2018-04-12T20:37:28.497551Z",
            "build_snapshot" : false,
            "lucene_version" : "7.2.1",
            "minimum_wire_compatibility_version" : "5.6.0",
            "minimum_index_compatibility_version" : "5.0.0"
          },
          "tagline" : "You Know, for Search"
        }
        
# 11. 开启ES远程访问
		vim elasticsearch.yml 将原来network修改为以下配置:
		network.host: 0.0.0.0

# 12. 启动时错误解决方案
	a.重新启动es出现如下错误
	  **ERROR: bootstrap checks failed[1]: max file descriptors [4096] for elasticsearch process is too low, 
	   increase to at least [65536]**
      解决方案:
       # 切换到root用户修改
        vim /etc/security/limits.conf
       # 在最后面追加下面内容
        *               soft    nofile          65536
        *               hard    nofile          65536
        *               soft    nproc           4096
        *               hard    nproc           4096
       # 退出重新登录检测配置是否生效:
        ulimit -Hn
        ulimit -Sn
        ulimit -Hu
        ulimit -Su

	b.重新启动出现如下错误
	  **ERROR: max number of threads [3802] for user [chenyn] is too low,increase to at least [4096]**
       解决方案:
       #进入limits.d目录下修改配置文件。
        vim /etc/security/limits.d/20-nproc.conf 
       # 修改为 启动ES用户名 soft nproc 4096
       
    c.重新启动出现如下错误
	  **ERROR: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]**
       解决方案:
        vim /etc/sysctl.conf
        vm.max_map_count=655360
       #执行以下命令生效:
        sysctl -p

# 13. 关闭网络防火墙
		systemctl stop firewalld   关闭本次防火墙服务
		systemctl disable firewalld 关闭开启自启动防火墙服务

# 14. 外部浏览器访问即可
	http://es的主机名:9200 出现如下信息说明安装成功:
	{
        "name" : "xQK1cwT",
        "cluster_name" : "elasticsearch",
        "cluster_uuid" : "t7IYk7LKQ0mXcyyrdFWpLg",
        "version" : {
        "number" : "7.6.0",
        "build_hash" : "ccec39f",
        "build_date" : "2018-04-12T20:37:28.497551Z",
        "build_snapshot" : false,
        "lucene_version" : "7.2.1",
        "minimum_wire_compatibility_version" : "5.6.0",
        "minimum_index_compatibility_version" : "5.0.0"
        },
        "tagline" : "You Know, for Search"
   	}

7. ES中基本概念

7.1 接近实时(Near Real Time 简称NRT)

Elasticsearch是一个接近实时的搜索平台。这意味着,从索引一个文档直到这个文档能够被搜索到有一个轻微的延迟(通常是1秒内)

7.2 索引(index)

一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母的)并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字索引类似于关系型数据库中Database 的概念。在一个集群中,如果你想,可以定义任意多的索引。

7.3 类型(type)

一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。在一个索引中,你可以定义一种或多种类型。通常,会为具有一组共同字段的文档定义一个类型。比如说,我们假设你运营一个博客平台并且将你所有的数 据存储到一个索引中。在这个索引中,你可以为用户数据定义一个类型,为博客数据定义另一个类型,当然,也可 以为评论数据定义另一个类型。类型类似于关系型数据库中Table的概念

NOTE: 在5.x版本以前可以在一个索引中定义多个类型,6.x之后版本也可以使用,但是不推荐,7.0.0以后将将不建议使用,在8.x版本中彻底移除一个索引中创建多个类型

弃用该概念的原因:

我们虽然可以通俗的去理解Index比作 SQL 的 Database,Type比作SQL的Table。但这并不准确,因为如果在SQL中,Table 之前相互独立,同名的字段在两个表中毫无关系。

但是在ES中,同一个Index 下不同的 Type 如果有同名的字段,他们会被 Luecen当作同一个字段 ,并且他们的定义必须相同。所以我觉得Index现在更像一个表,

而Type字段并没有多少意义。目前Type已经被弃用,在7.0开始,一个索引只能建一个Type为_doc

7.4 映射(Mapping)

Mapping是ES中的一个很重要的内容,它类似于传统关系型数据中table的schema,用于定义一个索引(index)中的类型(type)的数据的结构。 在ES中,我们可以手动创建type(相当于table)和mapping(相关与schema),也可以采用默认创建方式。在默认配置下,ES可以根据插入的数据自动地创建type及其mapping。 mapping中主要包括字段名、字段数据类型和字段索引类型

7.5 文档(document)

一个文档是一个可被索引的基础信息单元,类似于表中的一条记录比如,你可以拥有某一个员工的文档,也可以拥有某个商品的一个文档。文档以采用了轻量级的数据交换格式JSON(Javascript Object Notation)来表示。

image-20210127103927826

_index 文档所属索引名称。

_type 文档所属类型名。

_id Doc的主键。在写入的时候,可以指定该Doc的ID值,如果不指定,则系统自动生成一个唯一的UUID值。

_version 文档的版本信息。Elasticsearch通过使用version来保证对文档的变更能以正确的顺序执行,避免乱序造成的数据丢失。

_seq_no 严格递增的顺序号,每个文档一个,Shard级别严格递增,保证后写入的Doc的_seq_no大于先写入的Doc的_seq_no。

primary_term primary_term也和_seq_no一样是一个整数,每当Primary Shard发生重新分配时,比如重启,Primary选举等,_primary_term会递增1

found 查询的ID正确那么ture, 如果 Id 不正确,就查不到数据,found字段就是false。

_source 文档的原始JSON数据。


8. Kibana的安装

Kibana是一个针对Elasticsearch的开源分析及可视化平台,使用Kibana可以查询、查看并与存储在ES索引的数据进行交互操作,使用Kibana能执行高级的数据分析,并能以图表、表格和地图的形式查看数据

1. 下载Kibana
	https://www.elastic.co/downloads/kibana

2. 安装下载的kibana
	rpm -ivh kibana-7.6.0-x86_64.rpm

3. 查找kibana的安装位置
	find / -name kibana
    
4. 编辑kibana配置文件
	[root@localhost /]# vim /etc/kibana/kibana.yml

5. 修改如下配置
	server.host: "10.102.115.3"                		#ES服务器主机名
	elasticsearch.url: "http://10.102.115.3:9200"   #ES服务器地址

6. 启动kibana
	systemctl start kibana
	systemctl stop  kibana
	systemctl status kibana

7. 访问kibana的web界面  
	http://10.102.115.3:5601/   #kibana默认端口为5601 使用主机:端口直接访问即可    

9. Kibana的基本操作

9.1 索引(Index)的基本操作

PUT /dangdang/       	  	创建索引
DELETE /dangdang			删除索引
DELETE /*					删除所有索引
GET /_cat/indices?v 		查看索引信息

9.2 类型(type)的基本操作

创建类型

1.创建/dangdang索引并创建(product)类型
PUT /dangdang             
{
  "mappings": {
    "product": {
      "properties": {
        	"title":    { "type": "text"  },
        	"name":     { "type": "text"  },
       		"age":      { "type": "integer" },
        	"created":  {
         		 "type":   "date",
          		 "format": "strict_date_optional_time||epoch_millis"
        		}
      		}
    	}
  	}
}
注意: 这种方式创建类型要求索引不能存在

Mapping Type: : text , keyword , date ,integer, long , double , boolean or ip

查看类型

GET /dangdang/_mapping/product # 语法:GET /索引名/_mapping/类型名

9.3 文档(document)的基本操作

添加文档

POST /ems/_doc/1   #/索引/类型/id
{
  "name":"赵小六",
  "age":23,
  "bir":"2012-12-12",
  "content":"这是一个好一点的员工"
}

查询文档

GET /ems/_doc/1  
返回结果:
{
    "_index": "ems",
    "_type": "_doc",
    "_id": "1",
    "_version": 1,
    "_seq_no": 12,
    "_primary_term": 1,
    "found": true,
    "_source": {
        "name": "赵小六",
        "age": 23,
        "bir": "2012-12-12",
        "content": "这是一个好一点的员工"
    }
}

删除文档

DELETE /ems/_doc/1
{
  "_index": "ems",
  "_type": "_doc",
  "_id": "1",
  "_version": 2,
  "result": "deleted", #删除成功
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 1,
  "_primary_term": 1
}

更新文档

1.第一种方式  更新原有的数据
   POST /dangdang/_doc/1/_update
    {
      "doc":{
        "name":"xiaohei"
      }
    }
2.第二种方式  添加新的数据
    POST /ems/_doc/1/_update
    {
      "doc":{
        "name":"xiaohei",
        "age":11,
        "dpet":"你好部门"
      }
    }
3.第三种方式 在原来数据基础上更新
	POST /ems/_doc/1/_update
    {
      "script": "ctx._source.age += 5"
    }
ES的使用语法风格为:
<REST Verb> /<Index>/<Type>/<ID>
REST操作    /索引/类型/文档id

批量操作

1. 批量索引两个文档
    PUT /dangdang/_doc/_bulk
 	{"index":{"_id":"1"}} 
  		{"name": "John Doe","age":23,"bir":"2012-12-12"}
	{"index":{"_id":"2"}}  
  		{"name": "Jane Doe","age":23,"bir":"2012-12-12"}
    
2. 更新文档同时删除文档
    POST /dangdang/_doc/_bulk
		{"update":{"_id":"1"}}
			{"doc":{"name":"lisi"}}
		{"delete":{"_id":2}}
		{"index":{}}
			{"name":"xxx","age":23}
 
注意:批量时不会因为一个失败而全部失败,而是继续执行后续操作,批量在返回时按照执行的状态开始返回

10. ES中高级检索

10.1 检索方式

ES官方提供了两中检索方式:一种是通过 URL 参数进行搜索,另一种是通过 DSL(Domain Specified Language) 进行搜索官方更推荐使用第二种方式第二种方式是基于传递JSON作为请求体(request body)格式与ES进行交互,这种方式更强大,更简洁

10.2 测试数据

1.删除索引
DELETE /ems

2.创建索引并指定类型
PUT /ems
{
  "mappings":{
    "_doc":{
      "properties":{
        "name":{
          "type":"keyword"
        },
        "age":{
          "type":"integer"
        },
        "bir":{
          "type":"date"
        },
        "content":{
          "type":"text"
        },
        "address":{
          "type":"keyword"
        }
      }
    }
  }
}

3.插入测试数据
PUT /ems/_doc/_bulk
  {"index":{}}
  {"name":"小黑","age":23,"bir":"2012-12-12","content":"为开发团队选择一款优秀的MVC框架是件难事儿,在众多可行的方案中决择需要很高的经验和水平","address":"北京"}
  {"index":{}}
  {"name":"王小黑","age":24,"bir":"2012-12-12","content":"Spring 框架是一个分层架构,由 7 个定义良好的模块组成。Spring 模块构建在核心容器之上,核心容器定义了创建、配置和管理 bean 的方式","address":"上海"}
  {"index":{}}
  {"name":"张小五","age":8,"bir":"2012-12-12","content":"Spring Cloud 作为Java 语言的微服务框架,它依赖于Spring Boot,有快速开发、持续交付和容易部署等特点。Spring Cloud 的组件非常多,涉及微服务的方方面面,井在开源社区Spring 和Netflix 、Pivotal 两大公司的推动下越来越完善","address":"无锡"}
  {"index":{}}
  {"name":"win7","age":9,"bir":"2012-12-12","content":"Spring的目标是致力于全方位的简化Java开发。 这势必引出更多的解释, Spring是如何简化Java开发的?","address":"南京"}
  {"index":{}}
  {"name":"梅超风","age":43,"bir":"2012-12-12","content":"Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API","address":"杭州"}
  {"index":{}}
  {"name":"张无忌","age":59,"bir":"2012-12-12","content":"ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口","address":"北京"}

10.2 URL检索

GET /ems/_doc/_search?q=*&sort=age:asc

​ _search 搜索的API
​ q=* 匹配所有文档
​ sort 以结果中的指定字段排序

10.3 DSL检索

GET /ems/_doc/_search
{
    "query": {"match_all": {}},
    "sort": [
        {
            "age": {
                "order": "desc"
            }
        }
    ]
}

10.4 DSL高级检索(Query)

0. 查询所有(match_all)

match_all关键字: 返回索引中的全部文档

GET /ems/_doc/_search
{
 	"query": { "match_all": {} }
}	

1. 查询结果中返回指定条数(size)

size 关键字: 指定查询结果中返回指定条数。 默认返回值10条

GET /ems/_doc/_search
{
 	"query": { "match_all": {} },
	"size": 1
}	

2. 分页查询(from)

from 关键字: 用来指定起始返回位置,和size关键字连用可实现分页效果

GET /ems/_doc/_search
{
      "query": {"match_all": {}},
      "sort": [
        {
          "age": {
            "order": "desc"
          }
        }
      ],
      "size": 2, 
      "from": 1
}

3. 查询结果中返回指定字段(_source)

_source 关键字: 是一个数组,在数组中用来指定展示那些字段

GET /ems/_doc/_search
{
      "query": { "match_all": {} },
      "_source": ["account_number", "balance"]
}

4. 关键词查询(term)

term 关键字: 用来使用关键词查询

GET /ems/_doc/_search
{
  "query": {
    "term": {
      "address": {
        "value": "北京"
      }
    }
  }
}

NOTE1: 通过使用term查询得知ES中默认使用分词器为标准分词器(StandardAnalyzer),标准分词器对于英文单词分词,对于中文单字不分词

NOTE2: 通过使用term查询得知,在ES的Mapping Type 中 keyword , date ,integer, long , double , boolean or ip 这些类型不分词只有text类型分词

5. 范围查询(range)

range 关键字: 用来指定查询指定范围内的文档

GET /ems/_doc/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 8,
        "lte": 30
      }
    }
  }
}

6. 前缀查询(prefix)

prefix 关键字: 用来检索含有指定前缀的关键词的相关文档

GET /ems/_doc/_search
{
  "query": {
    "prefix": {
      "content": {
        "value": "redis"
      }
    }
  }
}

7. 通配符查询(wildcard)

wildcard 关键字: 通配符查询 ? 用来匹配一个任意字符 * 用来匹配多个任意字符

GET /ems/_doc/_search
{
  "query": {
    "wildcard": {
      "content": {
        "value": "re*"
      }
    }
  }
}

8. 多id查询(ids)

ids 关键字 : 值为数组类型,用来根据一组id获取多个对应的文档

GET  /ems/_doc/_search
{
  "query": {
    "ids": {
      "values": ["lg5HwWkBxH7z6xax7W3_","lQ5HwWkBxH7z6xax7W3_"]
    }
  }
}

9. 模糊查询(fuzzy)

fuzzy 关键字: 用来模糊查询含有指定关键字的文档 注意:允许出现的错误必须在0-2之间

GET /ems/_doc/_search
{
  "query": {
    "fuzzy": {
      "content":"spoong"
    }
  }
}

# 注意: 最大编辑距离为 0 1 2
如果关键词为2个长度      0..2 must match exactly  必须完全匹配
如果关键词长度3..5之间  one edit allowed    允许一个失败
如果关键词长度>5   two edits allowed       最多允许两个错误

10. 布尔查询(bool)

bool 关键字: 用来组合多个条件实现复杂查询 boolb表达式查询

must: 相当于&& 同时成立

should: 相当于|| 成立一个就行

must_not: 相当于! 不能满足任何一个

GET /ems/_doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "age": {
              "gte": 0,
              "lte": 30
            }
          }
        }
      ],
      "must_not": [
        {"wildcard": {
          "content": {
            "value": "redi?"
          }
        }}
      ]
    }
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ]
}

11. 高亮查询(highlight)

highlight 关键字: 可以让符合条件的文档中的关键词高亮

GET /ems/_doc/_search
{
  "query": {
    "term": {
      "content": {
        "value": "redis"
      }
    }
  },
  "highlight": {
    "fields": {
      "*": {}
    }
  }
}

自定义高亮html标签: 可以在highlight中使用pre_tagspost_tags

GET /ems/_doc/_search
{
  "query":{
    "term":{
      "content":"框架"
    }
  },
  "highlight": {
    "pre_tags": ["<span style='color:red'>"],
    "post_tags": ["</span>"],
    "fields": {
      "*":{}
    }
  }
}

多字段高亮 使用require_field_match开启多个字段高亮

 GET /ems/_doc/_search
{
  "query":{
    "term":{
      "content":"框架"
    }
  },
  "highlight": {
    "pre_tags": ["<span style='color:red'>"],
    "post_tags": ["</span>"],
    "require_field_match":false,
    "fields": {
      "*":{}
    }
  }
}

12. 多字段查询(multi_match)

注意:使用这种方式进行查询时,为了更好获取搜索结果,在查询过程中先将查询条件根据当前的分词器分词之后进行查询

GET /ems/_doc/_search
{
  "query": {
    "multi_match": {
      "query": "中国",
      "fields": ["name","content"] #这里写要检索的指定字段
    }
  }
}

13. 多字段分词查询(query_String)

注意:使用这种方式进行查询时,为了更好获取搜索结果,在查询过程中先将查询条件根据当前的分词器分词之后进行查询

GET /dangdang/book/_search
{
  "query": {
    "query_string": {
      "query": "中国声音",
      "analyzer": "ik_max_word", 
      "fields": ["name","content"]
    }
  }
}


11. IK分词器

NOTE: 默认ES中采用标准分词器进行分词,这种方式并不适用于中文网站,因此需要修改ES对中文友好分词,从而达到更加的搜索的效果。

11.1 在线安装IK

在线安装IK (v5.5.1版本后开始支持在线安装 )

1. 在es安装目录中执行如下命令

[es@linux elasticsearch-7.6.0]$ ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.0/elasticsearch-analysis-ik-7.6.0.zip
-> Downloading https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.0/elasticsearch-analysis-ik-7.6.0.zip
[=================================================] 100%
-> Installed analysis-ik
[es@linux elasticsearch-7.6.0]$ ls plugins/
analysis-ik
[es@linux elasticsearch-7.6.0]$ cd plugins/analysis-ik/
[es@linux analysis-ik]$ ls
commons-codec-1.9.jar    elasticsearch-analysis-ik-7.6.0.jar  httpcore-4.4.4.jar
commons-logging-1.2.jar  httpclient-4.5.2.jar                 plugin-descriptor.properties


2. 重启es生效

NOTE: 要求版本严格与当前使用版本一致,如需使用其他版本替换 7.6.0 为使用的版本号

11.2 本地安装IK

可以将对应的IK分词器下载到本地,然后再安装

1. 下载对应版本
	[es@linux ~]$ wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.0/elasticsearch-analysis-ik-7.6.0.zip

2. 解压
	[es@linux ~]$ unzip elasticsearch-analysis-ik-7.6.0.zip #先使用yum install -y unzip

3. 移动到es安装目录的plugins目录中
	[es@linux ~]$ ls elasticsearch-7.6.0/plugins/
	[es@linux ~]$ mv elasticsearch elasticsearch-7.6.0/plugins/
	[es@linux ~]$ ls elasticsearch-7.6.0/plugins/
		elasticsearch
	[es@linux ~]$ ls elasticsearch-7.6.0/plugins/elasticsearch/
		commons-codec-1.9.jar    config                               httpclient-4.5.2.jar  		plugin-descriptor.properties
		commons-logging-1.2.jar  elasticsearch-analysis-ik-7.6.0.jar  httpcore-4.4.4.jar
		
4. 重启es生效

11.3 测试IK分词器

NOTE: IK分词器提供了两种mapping类型用来做文档的分词分别是 ik_max_word ik_smart

ik_max_word 和 ik_smart 什么区别?

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。

测试数据


DELETE /ems

PUT /ems
{
  "mappings":{
    "_doc":{
      "properties":{
        "name":{
          "type":"text",
           "analyzer": "ik_max_word",
           "search_analyzer": "ik_max_word"
        },
        "age":{
          "type":"integer"
        },
        "bir":{
          "type":"date"
        },
        "content":{
          "type":"text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_max_word"
        },
        "address":{
          "type":"keyword"
        }
      }
    }
  }
}



PUT /ems/_doc/_bulk
  {"index":{}}
  {"name":"小黑","age":23,"bir":"2012-12-12","content":"为开发团队选择一款优秀的MVC框架是件难事儿,在众多可行的方案中决择需要很高的经验和水平","address":"北京"}
  {"index":{}}
  {"name":"王小黑","age":24,"bir":"2012-12-12","content":"Spring 框架是一个分层架构,由 7 个定义良好的模块组成。Spring 模块构建在核心容器之上,核心容器定义了创建、配置和管理 bean 的方式","address":"上海"}
  {"index":{}}
  {"name":"张小五","age":8,"bir":"2012-12-12","content":"Spring Cloud 作为Java 语言的微服务框架,它依赖于Spring Boot,有快速开发、持续交付和容易部署等特点。Spring Cloud 的组件非常多,涉及微服务的方方面面,井在开源社区Spring 和Netflix 、Pivotal 两大公司的推动下越来越完善","address":"无锡"}
  {"index":{}}
  {"name":"win7","age":9,"bir":"2012-12-12","content":"Spring的目标是致力于全方位的简化Java开发。 这势必引出更多的解释, Spring是如何简化Java开发的?","address":"南京"}
  {"index":{}}
  {"name":"梅超风","age":43,"bir":"2012-12-12","content":"Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API","address":"杭州"}
  {"index":{}}
  {"name":"张无忌","age":59,"bir":"2012-12-12","content":"ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口","address":"北京"}


GET /ems/_doc/_search
{
  "query":{
    "term":{
      "content":"框架"
    }
  },
  "highlight": {
    "pre_tags": ["<span style='color:red'>"],
    "post_tags": ["</span>"],
    "fields": {
      "*":{}
    }
  }
}

11.4 配置扩展词

IK支持自定义扩展词典停用词典,所谓扩展词典就是有些词并不是关键词,但是也希望被ES用来作为检索的关键词,可以将这些词加入扩展词典。停用词典就是有些词是关键词,但是出于业务场景不想使用这些关键词被检索到,可以将这些词放入停用词典。

如何定义扩展词典和停用词典可以修改IK分词器中config目录中IKAnalyzer.cfg.xml这个文件。

NOTE:词典的编码必须为UTF-8,否则无法生效

1. 修改vim IKAnalyzer.cfg.xml

    <?xml version="1.0" encoding="UTF-8"?>
    <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
    <properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 -->
        <entry key="ext_dict">ext_dict.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典-->
        <entry key="ext_stopwords">ext_stopword.dic</entry>
    </properties>

2. 在ik分词器目录下config目录中创建ext_dict.dic文件   编码一定要为UTF-8才能生效
	vim ext_dict.dic 加入扩展词即可

3. 在ik分词器目录下config目录中创建ext_stopword.dic文件 
	vim ext_stopword.dic 加入停用词即可

4.重启es生效

12. (过滤查询) Filter Query

12.1 过滤查询

其实准确来说,ES中的查询操作分为2种: 查询(query)过滤(filter)查询即是之前提到的query查询,它 (查询)默认会计算每个返回文档的得分,然后根据得分排序而过滤(filter)只会筛选出符合的文档,并不计算 得分,且它可以缓存文档 。所以,单从性能考虑,过滤比查询更快

换句话说,过滤适合在大范围筛选数据,而查询则适合精确匹配数据。一般应用时, 应先使用过滤操作过滤数据, 然后使用查询匹配数据。

12.2 过滤语法

GET /ems/_doc/_search
{
  "query": {
    "bool": {
      "must": [
        {"match_all": {}}
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 10
          }
        }
      }
    }
  }
}

NOTE: 在执行filter和query时,先执行filter在执行query

NOTE:Elasticsearch会自动缓存经常使用的过滤器,以加快性能。

12.3 常见的过滤器类型

term 、 terms Filter

GET /ems/_doc/_search   # 使用term过滤
{
  "query": {
    "bool": {
      "must": [
        {"term": {
          "name": {
            "value": "小黑"
          }
        }}
      ],
      "filter": {
        "term": {
          "content":"框架"
        }
      }
    }
  }
}
GET /dangdang/_doc/_search  #使用terms过滤
{
  "query": {
    "bool": {
      "must": [
        {"term": {
          "name": {
            "value": "中国"
          }
        }}
      ],
      "filter": {
        "terms": {
          "content":[
              "科技",
              "声音"
            ]
        }
      }
    }
  }
}

ranage filter

GET /ems/_doc/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {
          "name": {
            "value": "中国"
          }
        }}
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 7,
            "lte": 20
          }
        }
      }
    }
  }
}

exists filter

过滤存在指定字段,获取字段不为空的索引记录使用

GET /ems/_doc/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {
          "name": {
            "value": "中国"
          }
        }}
      ],
      "filter": {
        "exists": {
          "field":"aaa"
        }
      }
    }
  }
}

ids filter

过滤含有指定字段的索引记录

GET /ems/_doc/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {
          "name": {
            "value": "中国"
          }
        }}
      ],
      "filter": {
        "ids": {
          "values": ["1","2","3"]
        }
      }
    }
  }
}

13. Java操作ES

13.1 引入maven依赖

 	<!-- high client-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.6.0</version>
            <exclusions>
                <exclusion>
                    <groupId>org.elasticsearch.client</groupId>
                    <artifactId>elasticsearch-rest-client</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.elasticsearch</groupId>
                    <artifactId>elasticsearch</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch -->
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.6.0</version>
        </dependency>
        <!--rest low client-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>7.6.0</version>
        </dependency>

13.2创建索引和类型

Rest的创建方式

// 1.在restful的创建方式

PUT /dangdang
{
  "mappings": {
    "book":{
      "properties": {
        "name":{
          "type":"text",
          "analyzer": "ik_max_word"
        },
        "age":{
          "type":"integer"
        },
        "sex":{
          "type":"keyword"
        },
        "content":{
          "type":"text",
          "analyzer": "ik_max_word"
        }
      }
    }
  }
}

Java中创建方式

/**
 * 创建索引并创建类型同时指定映射
 */
@Test
public void testCreateIndexAndTypeAndMapping() throws IOException, ExecutionException, InterruptedException {
    System.out.println("=======创建索引=======");
        CreateIndexRequest indexRequest = new CreateIndexRequest("dangdang");
        CreateIndexResponse indexResponse = client.indices().create(indexRequest, RequestOptions.DEFAULT);
        System.out.println(indexResponse.index());

        System.out.println("=======创建类型指定映射=======");
        XContentBuilder xContentBuilder = XContentFactory.jsonBuilder();
        xContentBuilder.startObject("properties").startObject("name")
                .field("type", "text")
                .field("analyzer", "ik_max_word")
                .endObject()
                .startObject("age")
                .field("type", "integer")
                .endObject()
                .startObject("sex")
                .field("type", "keyword")
                .endObject()
                .startObject("content")
                .field("type", "text")
                .field("analyzer", "ik_max_word")
                .endObject()
                .endObject()
                .endObject();

        PutMappingRequest putMappingRequest = new PutMappingRequest("dangdang").source(xContentBuilder);
        client.indices().putMapping(putMappingRequest);
}

13.3 索引一条记录

	/**
     * 添加文档 手动指定id
     *
     * @param indexName 索引名称
     * @param id        文档id
     * @param source    文档数据
     * @return
     * @throws IOException
     */
    public IndexResponse addDoc(String indexName, String id, String source) throws IOException {
        IndexRequest request = new IndexRequest(indexName);
        if (null != id) {
            request.id(id);
        }
        request.source(source, XContentType.JSON);
        return client.index(request, RequestOptions.DEFAULT);
    }

13.3 更新一条索引

	/**
     * 根据 id 更新指定索引中的文档
     *
     * @param indexName 索引名称
     * @param id        文档id
     * @return
     * @throws IOException
     */
    public UpdateResponse updateDoc(String indexName, String id, String updateJson) throws IOException {
        UpdateRequest request = new UpdateRequest(indexName, id);
        request.doc(updateJson, XContentType.JSON);
        return client.update(request, RequestOptions.DEFAULT);
    }

13.4 删除一条索引

	/**
     * 根据 id 删除指定索引中的文档
     *
     * @param indexName 索引名称
     * @param id        文档id
     * @return
     * @throws IOException
     */
    public DeleteResponse deleteDoc(String indexName, String id) throws IOException {
        DeleteRequest request = new DeleteRequest(indexName, id);
        return client.delete(request, RequestOptions.DEFAULT);
    }

13.5 批量更新

	/**
     * 批量更新
     */
    public void testBulk() throws IOException {
        //添加第一条记录
        IndexRequest request1 = new IndexRequest("dangdang");
        request1.id("1").source(XContentFactory.jsonBuilder().startObject().field("name", "中国科技").field("age", 23).field("sex", "男").field("content", "这是个好人").endObject());

        //添加第二条记录
        IndexRequest request2 = new IndexRequest("dangdang", "2");
        request2.source(XContentFactory.jsonBuilder().startObject().field("name", "中国之声").field("age", 23).field("sex", "男").field("content", "这是一个好的声音").endObject());

        //更新记录
        UpdateRequest updateRequest = new UpdateRequest("dangdang", "1");
        updateRequest.doc(XContentFactory.jsonBuilder().startObject().field("name", "中国力量").endObject());

        //删除一条记录
        DeleteRequest deleteRequest = new DeleteRequest("dangdang", "1");

        BulkRequest bulkRequest = new BulkRequest();
        bulkRequest.add(request1).add(request2).add(updateRequest).add(deleteRequest);
        BulkResponse bulk = client.bulk(bulkRequest, RequestOptions.DEFAULT);
        BulkItemResponse[] items = bulk.getItems();
        for (BulkItemResponse item : items) {
            System.out.println(item.status());
        }
    }

13.6 检索记录

查询所有并排序

/**
     * 查询所有并排序
     *  ASC 升序  DESC 降序
     *  .sort("age", SortOrder.ASC)  指定排序字段以及使用哪种方式排序
     *  .sort("age", SortOrder.DESC) 指定排序字段以及使用哪种方式排序
     */
    @Test
    public void testMatchAllQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(new MatchAllQueryBuilder()).sort("age", SortOrder.ASC);
        
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits hits = searchResponse.getHits();
        System.out.println("符合条件的记录数: " + hits.getTotalHits());
        for (SearchHit hit : hits) {
            System.out.println("当前索引的分数: " + hit.getScore());
            System.out.println("对应结果:=====>" + hit.getSourceAsString());
            System.out.println("指定字段结果:" + hit.getSourceAsMap().get("name"));
            System.out.println("=================================================");
        }
    }

分页查询

	/**
     * 分页查询
     *  From 从那条记录开始 默认从0 开始  form = (pageNow-1)*size
     *  Size 每次返回多少条符合条件的结果  默认10
     */
    @Test
    public void testMatchAllQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(new MatchAllQueryBuilder()).sort("age", SortOrder.ASC);
        searchSourceBuilder.from(0);
        searchSourceBuilder.size(5);
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits hits = searchResponse.getHits();
        System.out.println("符合条件的记录数: " + hits.getTotalHits());
        for (SearchHit hit : hits) {
            System.out.println("当前索引的分数: " + hit.getScore());
            System.out.println("对应结果:=====>" + hit.getSourceAsString());
            System.out.println("指定字段结果:" + hit.getSourceAsMap().get("name"));
            System.out.println("=================================================");
        }
    }

查询返回字段

	/**
     *  查询返回指定字段(source) 默认返回所有
     *      fetchSource 参数1:包含哪些字段   参数2:排除哪些字段
     *      fetchSource("*","age")  返回所有字段中排除age字段
     *      fetchSource("name","")  只返回name字段
     *      fetchSource(new String[]{},new String[]{})
     */
    @Test
    public void testMatchAllQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(new MatchAllQueryBuilder()).sort("age", SortOrder.ASC);
        searchSourceBuilder.from(0);
        searchSourceBuilder.size(5);
        searchSourceBuilder.fetchSource("*","age");
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits hits = searchResponse.getHits();
        System.out.println("符合条件的记录数: " + hits.getTotalHits());
        for (SearchHit hit : hits) {
            System.out.println("当前索引的分数: " + hit.getScore());
            System.out.println("对应结果:=====>" + hit.getSourceAsString());
            System.out.println("指定字段结果:" + hit.getSourceAsMap().get("name"));
            System.out.println("=================================================");
        }
    }

term查询

	/**
     *  term查询
     */
    @Test
    public void testTerm() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.termQuery("name","小黑"));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    }

range查询

	/**
     *  rang查询
     *     lt    小于
     *     lte   小于等于
     *     gt    大于
     *     gte   大于等于
     */
    @Test
    public void testRange() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.rangeQuery("age").lt(40).gte(8)).sort("age", SortOrder.ASC);
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
       	
    }

prefix查询

 	/**
     * prefix 前缀查询
     */
    @Test
    public void testPrefix() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.prefixQuery("name", "张"));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        
    }

wildcard查询

	/**
     *  wildcardQuery 通配符查询
     *
     */
   	@Test
    public void testwildcardQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.wildcardQuery("name", "张*"));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
       
    }

Ids查询

	/**
     * ids 查询
     */
    @Test
    public void testIds() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.idsQuery().addIds("R2t-9HYBj6awZSXQsOLH", "Rmt-9HYBj6awZSXQsOLH"));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    }

fuzzy模糊查询

  	/**
     * fuzzy 查询
     */
    @Test
    public void testFuzzy() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(QueryBuilders.fuzzyQuery("content", "开发"));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        
    }

bool 查询

  	/**
     * bool 查询
     */
    @Test
    public void testBool() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        boolQueryBuilder.should(QueryBuilders.matchAllQuery());
        boolQueryBuilder.mustNot(QueryBuilders.rangeQuery("age").lte(8));
        boolQueryBuilder.must(QueryBuilders.termQuery("name","中国"));
        searchSourceBuilder.query(boolQueryBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits hits = searchResponse.getHits();
        System.out.println("符合条件的记录数: " + hits.getTotalHits());
        for (SearchHit hit : hits) {
            System.out.println("当前索引的分数: " + hit.getScore());
            System.out.println("对应结果:=====>" + hit.getSourceAsString());
            System.out.println("指定字段结果:" + hit.getSourceAsMap().get("name"));
            System.out.println("=================================================");
        }
    }

高亮查询

/**
     * 高亮查询
     *  .highlighter(highlightBuilder) 用来指定高亮设置
     *  requireFieldMatch(false) 开启多个字段高亮
     *  field 用来定义高亮字段
     *  preTags("<span style='color:red'>")  用来指定高亮前缀
     *  postTags("</span>") 用来指定高亮后缀
     */
    @Test
    public void testHighlight() throws IOException {
        SearchRequest searchRequest = new SearchRequest("ems");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //searchSourceBuilder.query(QueryBuilders.termQuery("name", "win"));
        searchSourceBuilder.query(QueryBuilders.termQuery("content", "框架"));
        HighlightBuilder highlightBuilder = new HighlightBuilder();
        highlightBuilder.requireFieldMatch(false).field("name").field("content").preTags("<span style='color:red'>").postTags("</span>");
        searchSourceBuilder.highlighter(highlightBuilder);
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        SearchHits hits = searchResponse.getHits();
        System.out.println("符合条件的记录数: "+hits.getTotalHits());
        for (SearchHit hit : hits) {
            Map<String, Object> sourceAsMap = hit.getSourceAsMap();
            Map<String, HighlightField> highlightFields = hit.getHighlightFields();
            System.out.println("================高亮之前==========");
            for(Map.Entry<String,Object> entry:sourceAsMap.entrySet()){
                System.out.println("key: "+entry.getKey() +"   value: "+entry.getValue());
            }
            System.out.println("================高亮之后==========");
            for (Map.Entry<String,Object> entry:sourceAsMap.entrySet()){
                HighlightField highlightField = highlightFields.get(entry.getKey());
                if (highlightField!=null){
                    System.out.println("key: "+entry.getKey() +"   value: "+ highlightField.fragments()[0]);
                }else{
                    System.out.println("key: "+entry.getKey() +"   value: "+entry.getValue());
                }
            }
        }
    }

多字段查询

MultiMatchQueryBuilder queryBuilder 
	= QueryBuilders.multiMatchQuery("框架","content","name");

多字段分词查询

QueryStringQueryBuilder queryStringQueryBuilder = 
    QueryBuilders.queryStringQuery("框架张无忌")
    .analyzer("ik_max_word") //定义分词器
    .field("name")//定义字段
    .field("content");//字段

14. SpringBoot Data操作ES

14.1 引入依赖

<!--通过spring data 操作Es-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

14.2 编写yml配置

spring:
  data:
    elasticsearch:
      cluster-nodes: localhost:9300

14.3 编写entity

@Document(indexName = "dangdang",type = "book")
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Book {
    @Id
    private String id;

    @Field(type = FieldType.Text,analyzer ="ik_max_word")
    private String name;


    @Field(type = FieldType.Date)
    private Date createDate;

    @Field(type = FieldType.Keyword)
    private String author;

    @Field(type = FieldType.Text,analyzer ="ik_max_word")
    private String content;
}

@Document: 代表一个文档记录

indexName: 用来指定索引名称

type: 用来指定索引类型

@Id: 用来将对象中id和ES中_id映射

@Field: 用来指定ES中的字段对应Mapping

type: 用来指定ES中存储类型

analyzer: 用来指定使用哪种分词器

14.4 编写BookRepository

public interface BookRepository extends ElasticsearchRepository<Book,String> {
}

14.5 索引or更新一条记录

NOTE:这种方式根据实体类中中配置自动在ES创建索引,类型以及映射

@SpringBootTest(classes = Application.class)
@RunWith(SpringRunner.class)
public class TestSpringBootDataEs {
    @Autowired
    private BookRepository bookRespistory;
    /**
     * 添加索引和更新索引 id 存在更新 不存在添加
     */
    @Test
    public void testSaveOrUpdate(){
        Book book = new Book();
        book.setId("21");
        book.setName("小陈");
        book.setCreateDate(new Date());
        book.setAuthor("李白");
        book.setContent("这是中国的好人,这真的是一个很好的人,李白很狂");
        bookRespistory.save(book);
    }
}

14.6 删除一条记录

    /**
     * 删除一条索引
     */
    @Test
    public void testDelete(){
        Book book = new Book();
        book.setId("21");
        bookRespistory.delete(book);
    }

14.7 查询

    /**
     * 查询所有
     */
    @Test
    public void testFindAll(){
        Iterable<Book> books = bookRespistory.findAll();
        for (Book book : books) {
            System.out.println(book);
        }
    }


    /**
     * 查询一个
     */
    @Test
    public void testFindOne(){
        Optional<Book> byId = bookRespistory.findById("21");
        System.out.println(byId.get());
    }

14.8 查询排序

	/**
     * 排序查询
     */
    @Test
    public void testFindAllOrder(){
        Iterable<Book> books = bookRespistory.findAll(Sort.by(Sort.Order.asc("createDate")));
        books.forEach(book -> System.out.println(book) );
    }

14.9 自定义基本查询

Keyword Sample Elasticsearch Query String
And findByNameAndPrice {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Or findByNameOrPrice {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Is findByName {"bool" : {"must" : {"field" : {"name" : "?"}}}}
Not findByNameNot {"bool" : {"must_not" : {"field" : {"name" : "?"}}}}
Between findByPriceBetween {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
LessThanEqual findByPriceLessThan {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
GreaterThanEqual findByPriceGreaterThan {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Before findByPriceBefore {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
After findByPriceAfter {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Like findByNameLike {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
StartingWith findByNameStartingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
EndingWith findByNameEndingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}}
Contains/Containing findByNameContaining {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}}
In findByNameIn
(Collection<String>names)
{"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}}
NotIn findByNameNotIn
(Collection<String>names)
{"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}}
Near findByStoreNear Not Supported Yet !
True findByAvailableTrue {"bool" : {"must" : {"field" : {"available" : true}}}}
False findByAvailableFalse {"bool" : {"must" : {"field" : {"available" : false}}}}
OrderBy findByAvailable
TrueOrderByNameDesc
{"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}}
public interface BookRepository extends ElasticsearchRepository<Book,String> {

    //根据作者查询
    List<Book> findByAuthor(String keyword);

    //根据内容查询
    List<Book> findByContent(String keyword);

    //根据内容和名字查
    List<Book> findByNameAndContent(String name,String content);

    //根据内容或名称查询
    List<Book> findByNameOrContent(String name,String content);

    //范围查询
    List<Book> findByPriceBetween(Double start,Double end);

    //查询名字以xx开始的
    List<Book>  findByNameStartingWith(String name);

    //查询某个字段值是否为false
    List<Book>  findByNameFalse();
    
    //.......
}

14.10 实现复杂查询

自定义接口
public interface CustomerBookRepository  {

    //实现分页的方法
    List<Book> findByPageable(int page,int size);
    //term查询高亮
    List<Book> findByNameAndHighlightAdnPageable(String name,int page,int size,String filter);

}

自定义实现
@Configuration
public class CustomerBookRepositoryImpl implements CustomerBookRepository{

    @Autowired
    private ElasticsearchT_doclate elasticsearchT_doclate;

    @Override
    public List<Book> findByNameAndHighlightAdnPageable(String name, int page, int size,String filter) {


        HighlightBuilder.Field nameField = new HighlightBuilder
                .Field("*")
                .preTags("<span style='color:red'>")
                .postTags("</span>").requireFieldMatch(false);


        NativeSearchQuery nativeSearchQuery = new NativeSearchQueryBuilder()

                .withQuery(QueryBuilders.multiMatchQuery(name,"name","content"))
                .withPageable(PageRequest.of(page,size))
                .withHighlightFields(nameField)
                .withFilter(boolQuery().mustNot(termQuery("name",filter)))
                .build();

        AggregatedPage<Book> books = elasticsearchT_doclate.queryForPage(nativeSearchQuery, Book.class, new SearchResultMapper() {
            @Override
            public <T> AggregatedPage<T> mapResults(SearchResponse response, Class<T> clazz, Pageable pageable) {
                SearchHits searchHits = response.getHits();
                SearchHit[] hits = searchHits.getHits();
                ArrayList<Book> books = new ArrayList<Book>();
                for (SearchHit hit : hits) {
                    Book book = new Book();
                    //原始map
                    Map<String, Object> sourceAsMap = hit.getSourceAsMap();
                    book.setId(sourceAsMap.get("id").toString());
                    book.setAuthor(sourceAsMap.get("author").toString());
       book.setPrice(Double.parseDouble(sourceAsMap.get("price").toString()));
book.setCreateDate(new Date(Long.valueOf(sourceAsMap.get("createDate").toString())));
                    book.setName(sourceAsMap.get("name").toString());
                    book.setContent(sourceAsMap.get("content").toString());

                    //高亮
                    Map<String, HighlightField> highlightFields = hit.getHighlightFields();
                    System.out.println(highlightFields);
                    if (highlightFields.get("name") != null) {
                        String nameHighlight = highlightFields.get("name").getFragments()[0].toString();
                        book.setName(nameHighlight);
                    }
                    if (highlightFields.get("content") != null) {
                        String contentHighlight = highlightFields.get("content").getFragments()[0].toString();
                        book.setContent(contentHighlight);
                    }
                    books.add(book);
                }
                return new AggregatedPageImpl<T>((List<T>)books);
            }
        });
        return books.getContent();
    }

    @Override
    public List<Book> findByPageable(int page, int size) {
        NativeSearchQuery searchQuery = new NativeSearchQueryBuilder()
                .withIndices("dangdang")
                .withTypes("book")
                .withQuery(matchAllQuery())
                .withPageable(PageRequest.of(page,size))
                .build();
        return elasticsearchT_doclate.queryForList(searchQuery,Book.class);
    }
}

15. ES中集群

15.1 相关概念

集群(cluster)

一个集群就是由一个或多个节点组织在一起,它们共同持有你整个的数据,并一起提供索引和搜索功能。一个集群 由一个唯一的名字标识,这个名字默认就是elasticsearch。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群。在产品环境中显式地设定这个名字是一个好习惯,但是使用默认值来进行测试/开发也是不错的。

节点(node)

一个节点是你集群中的一个服务器,作为集群的一部分,它存储你的数据,参与集群的索引和搜索功能。和集群类似,一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫 做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。

在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点, 这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

分片和复制(shards & replicas)

一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置 到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:

允许你水平分割/扩展你的内容容量允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。复制之所以重要,主要有两方面的原因:

在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要 (original/primary)分片置于同一节点上是非常重要的。 扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个 索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。

默认情况下,Elasticsearch中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。

15.2 快速搭建集群

1. 将原有ES安装包复制三份
	cp -r elasticsearch-7.6.0/ master/
	cp -r elasticsearch-7.6.0/ slave1/
	cp -r elasticsearch-7.6.0/ slave2/
	
2. 删除复制目录中data目录 
	#注意:由于复制目录之前使用过因此需要在创建集群时将原来数据删除
	rm -rf master/data
	rm -rf slave1/data
	rm -rf slave2/data
	
3. 编辑没有文件夹中config目录中jvm.options文件跳转启动内存
	vim master/config/jvm.options  
	vim slave1/config/jvm.options
	vim slave2/config/jvm.options
	#分别加入: -Xms512m -Xmx512m
	
4. 分别修改三个文件夹中config目录中elasticsearch.yml文件
	vim master/config/elasticsearch.yml
	vim salve1/config/elasticsearch.yml
	vim slave2/config/elasticsearch.yml
	#分别修改如下配置:
		cluster.name: my-es                       #集群名称(集群名称必须一致)
		node.name: es-03                          #节点名称(节点名称不能一致)
		network.host: 0.0.0.0                     #监听地址(必须开启远程权限,并关闭防火墙)
		http.port: 9200                           #监听端口(在一台机器时服务端口不能一致)
		discovery.zen.ping.unicast.hosts: ["localhost:9301", "localhost:9302"] #另外两个节点的ip
		gateway.recover_after_nodes: 3            #集群可做master的最小节点数
		transport.tcp.port: 9300				  #集群TCP端口(在一台机器搭建必须修改)
5.	启动多个es
	./master/bin/elasticsearch
	./slave1/bin/elasticsearch
	./slave2/bin/elasticsearch
	
6. 查看节点状态
	curl  http://10.102.115.3:9200
	curl  http://10.102.115.3:8200
	curl  http://10.102.115.3:7200

7. 查看集群健康
	http://10.102.115.3:9200/_cat/health?v

15.3 安装head插件(可视化插件)

1. 访问github网站
	搜索: elasticsearch-head 插件
	
2. 安装git
	yum install git
	
3. 将elasticsearch-head下载到本地
	git clone git://github.com/mobz/elasticsearch-head.git

4. 安装nodejs
	#注意: 没有wget的请先安装yum install -y wget
	wget http://cdn.npm.taobao.org/dist/node/latest-v8.x/node-v8.1.2-linux-x64.tar.xz

5. 解压缩nodejs
	xz -d node-v10.15.3-linux-arm64.tar.xz
	tar -xvf node-v10.15.3-linux-arm64.tar

6. 配置环境变量
	mv node-v10.15.3-linux-arm64 nodejs
	mv nodejs /usr/nodejs
	vim /etc/profile
		export NODE_HOME=/usr/nodejs
		export PATH=$PATH:$JAVA_HOME/bin:$NODE_HOME/bin
	source /etc/profile
7.	进入elasticsearch-head的目录
	npm config set registry https://registry.npm.taobao.org
	npm install
	npm run start

8.  编写elastsearch.yml配置文件开启head插件的访问
	http.cors.enabled: true
	http.cors.allow-origin: "*"

9.  启动访问head插件 默认端口9100
	http://ip:9100  查看集群状态

http://192.168.8.112:5601

https://www.cnblogs.com/reycg-blog/p/9931482.html

https://blog.csdn.net/UbuntuTouch/article/details/99481016

标签:name,查询,索引,elasticsearch,new,ElasticSearch,query
From: https://www.cnblogs.com/xiongyungang/p/16944176.html

相关文章

  • ElasticSearch笔记
    原文地址:https://www.kuangstudy.com/bbs/1354069127022583809笔记记录B站狂神说Java的ElasticSearch课程:https://www.bilibili.com/video/BV17a4y1x7zq在学习E......
  • Elasticsearch Mapping字段未支持索引导致搜索失效问题处理
    问题描述:生产上Es根据一个时间字段搜索,却没有返回数据问题分析:根据命令:GETindexName/_mapping查看#GETindexName/_mapping{ "indexName":{ "mappin......
  • ElasticSearch面试题
    1.为什么要使用ElasticSearch系统中的数据,随着业务的发展,时间的推移,将会非常多,而业务中往往采用模糊查询进行数据的搜索,而模糊查询会导致查询引擎放弃索引,导致系统......
  • Linux搭建ElasticSearch集群
    前言这是整个ElasticSearch搭建的最后一篇文章,其实对我而言ElasticSearch在Linux上搭建集群写这篇文章意义并不大,只是为了补充这个空白而已,所以这篇文章并不会讲解很详细......
  • ElasticSearch集群数据读写流程
    前言本章作为ElasticSearch分布式集群的附属章节,主要讲解ElasticSearch集群环境下数据是如何读写的,既然讲到读写,那么ElasticSearch的更新就是基于二者的结合,顺带也讲一下......
  • ELasticSearch优化
    硬件优化Elasticsearch的基础是Lucene,所有的素引和文档数据是存储在本地的磁盘中,具体的路径可在ES的配置文件./config/elasticsearch.yml中配置,如下:磁盘在现代服务......
  • ElasticSearch分布式集群
    前言关于ElasticSearch集群概念这里就不多废话了,详细可见ElasticSearch基本介绍、ElasticSearch集群系统架构单节点集群我们可以创建一个索引,为这个索引创建三个分片......
  • SpringBoot整合ElasticSearch-SpringData
    前言之前写过一篇SpringBoot整合ElasticSearch是使用的elasticsearch-rest-high-level-client,这篇文章使用Spring-Data来操作ElasticSearch。关于ElasticSearch的搭建我......
  • ElasticSearch集群概念
    单机存在的问题单台Elasticsearch服务器提供服务,往往都有最大的负载能力,超过这个阈值,服务器性能就会大大降低甚至不可用,所以生产环境中,一般都是运行在指定服务器集......
  • Windows安装ElasticSearch
    前言习惯使用docker安装各种中间件了,但是程序包安装方式也不能丢呀。官网下载地址,我这里使用的是7.4.2,如果需要使用其他版本,更改连接后面的版本号即可!下载下载速度还......