首页 > 其他分享 >HA配置之yarn-site.xml

HA配置之yarn-site.xml

时间:2022-08-26 22:33:44浏览次数:56  
标签:xml vcores resource resourcemanager yarn scheduler nodemanager HA

<?xml version="1.0"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 启用resourcemanager ha -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>

    <!-- 声明两台resourcemanager的地址 -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <!--指定resourcemanager的逻辑列表-->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
    <!-- ========== rm1的配置 ========== -->
    <!-- 指定rm1的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop102</value>
    </property>

    <!-- 指定rm1的web端地址 -->
    <property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>hadoop102:8088</value>
    </property>

    <!-- 指定rm1的内部通信地址 -->
    <property>
        <name>yarn.resourcemanager.address.rm1</name>
        <value>hadoop102:8032</value>
    </property>

    <!-- 指定AM向rm1申请资源的地址 -->
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm1</name>
        <value>hadoop102:8030</value>
    </property>

    <!-- 指定供NM连接的地址 -->
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
        <value>hadoop102:8031</value>
    </property>

    <!-- ========== rm2的配置 ========== -->
    <!-- 指定rm2的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop105</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>hadoop105:8088</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address.rm2</name>
        <value>hadoop105:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm2</name>
        <value>hadoop105:8030</value>
    </property>

    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
        <value>hadoop105:8031</value>
    </property>


    <!-- 指定zookeeper集群的地址 -->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop102:2181,hadoop105:2181,hadoop106:2181</value>
    </property>

    <!-- 启用自动恢复 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>

    <!-- 指定resourcemanager的状态信息存储在zookeeper集群 -->
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>

    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>

    <!-- 选择调度器,默认容量 -->
    <property>
        <description>The class to use as the resource scheduler.</description>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
    </property>

    <!-- ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台 * 4线程 = 12线程(去除其他应用程序实际不能超过8) -->
    <property>
        <description>Number of threads to handle scheduler interface.</description>
        <name>yarn.resourcemanager.scheduler.client.thread-count</name>
        <value>8</value>
    </property>


    <!--
    是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数
    -->
    <property>
        <description>Flag to determine if logical processors(such as
            hyperthreads) should be counted as cores. Only applicable on Linux
            when yarn.nodemanager.resource.cpu-vcores is set to -1 and
            yarn.nodemanager.resource.detect-hardware-capabilities is true.
        </description>
        <name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
        <value>false</value>
    </property>

    <!-- 是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动 -->
    <property>
        <description>Enable auto-detection of node capabilities such as
            memory and CPU.
        </description>
        <name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
        <value>false</value>
    </property>


    <!--
    Core转成Vcore的个数(虚拟核数和物理核数乘数,默认是1.0)
    hadoop中的vcore不是真正的core,通常vcore的个数设置为逻辑cpu个数的1~5倍。
    -->
    <property>
        <description>Multiplier to determine how to convert phyiscal cores to vcores. This value is used if
            yarn.nodemanager.resource.cpu-vcores is set to -1(which implies auto-calculate vcores) and
            yarn.nodemanager.resource.detect-hardware-capabilities is set to true. The    number of vcores will be calculated as    number of CPUs * multiplier.
        </description>
        <name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
        <value>1.0</value>
    </property>

    <!-- NodeManager使用内存数,默认8G,修改为4G内存 -->
    <property>
        <description>Amount of physical memory, in MB, that can be allocated
            for containers. If set to -1 and
            yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
            automatically calculated(in case of Windows and Linux).
            In other cases, the default is 8192MB.
        </description>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>6144</value>
    </property>

    <!-- nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个 -->
    <property>
        <description>Number of vcores that can be allocated
            for containers. This is used by the RM scheduler when allocating
            resources for containers. This is not used to limit the number of
            CPUs used by YARN containers. If it is set to -1 and
            yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
            automatically determined from the hardware in case of Windows and Linux.
            In other cases, number of vcores is 8 by default.</description>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>2</value>
    </property>

    <!-- 容器最小内存,默认1G -->
    <property>
        <description>The minimum allocation for every container request at the RM    in MBs. Memory requests lower than this will be set to the value of this    property. Additionally, a node manager that is configured to have less memory    than this value will be shut down by the resource manager.
        </description>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>1024</value>
    </property>

    <!-- 容器最大内存,默认8G,修改为2G -->
    <property>
        <description>The maximum allocation for every container request at the RM    in MBs. Memory requests higher than this will throw an    InvalidResourceRequestException.
        </description>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>6144</value>
    </property>

    <!-- 容器最小CPU核数,默认1个 -->
    <property>
        <description>The minimum allocation for every container request at the RM    in terms of virtual CPU cores. Requests lower than this will be set to the    value of this property. Additionally, a node manager that is configured to    have fewer virtual cores than this value will be shut down by the resource    manager.
        </description>
        <name>yarn.scheduler.minimum-allocation-vcores</name>
        <value>1</value>
    </property>

    <!-- 容器最大CPU核数,默认4个,修改为2个 -->
    <property>
        <description>The maximum allocation for every container request at the RM    in terms of virtual CPU cores. Requests higher than this will throw an
            InvalidResourceRequestException.</description>
        <name>yarn.scheduler.maximum-allocation-vcores</name>
        <value>2</value>
    </property>

    <!-- 虚拟内存检查(限制),默认打开,修改为关闭 -->
    <property>
        <description>Whether virtual memory limits will be enforced for
            containers.</description>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>

    <!-- 虚拟内存和物理内存设置比例,默认2.1 -->
    <property>
        <description>Ratio between virtual memory to physical memory when    setting memory limits for containers. Container allocations are    expressed in terms of physical memory, and virtual memory usage    is allowed to exceed this allocation by this ratio.
        </description>
        <name>yarn.nodemanager.vmem-pmem-ratio</name>
        <value>2.1</value>
    </property>


    <!-- 开启日志聚集功能 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <!-- 设置日志聚集服务器地址 -->
    <property>
        <name>yarn.log.server.url</name>
        <value>http://hadoop102:19888/jobhistory/logs</value>
    </property>
    <!-- 设置日志保留时间为7天 -->
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
    </property>


</configuration>

 

标签:xml,vcores,resource,resourcemanager,yarn,scheduler,nodemanager,HA
From: https://www.cnblogs.com/averyve/p/16629444.html

相关文章