首页 > 其他分享 >洛谷-P2486 染色

洛谷-P2486 染色

时间:2022-08-14 23:23:30浏览次数:87  
标签:洛谷 int 染色 top dfn maxn nex P2486 now

染色

树链剖分

考虑如果在数列上的话,就是用线段树处理这个问题

线段树记录答案,并且处理区间和并的问题:如果区间合并的地方颜色相同,则加和后的答案要减一

因此维护所有线段树区间两端的颜色

染色的过程可以加入 \(lazytag\)

然后再在树上跑一个树链剖分

时间复杂度为 \(O(nlog^2n)\)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 1e5 + 10;
int fa[maxn], hson[maxn], siz[maxn], dep[maxn];
int top[maxn], dfn[maxn], rnk[maxn], tp = 0;
int col[maxn], lcol[maxn << 2], rcol[maxn << 2];
int tag[maxn << 2], tr[maxn << 2];
vector<int>gra[maxn];

void dfs1(int now, int pre, int d)
{
    dep[now] = d;
    hson[now] = -1;
    siz[now] = 1;
    fa[now] = pre;
    for(int nex : gra[now])
    {
        if(nex == pre) continue;
        dfs1(nex, now, d + 1);
        siz[now] += siz[nex];
        if(hson[now] == -1 || siz[hson[now]] < siz[nex])
            hson[now] = nex;
    }
}

void dfs2(int now, int t)
{
    tp++;
    dfn[now] = tp;
    rnk[tp] = now;
    top[now] = t;
    if(hson[now] != -1)
    {
        dfs2(hson[now], t);
        for(int nex : gra[now])
        {
            if(nex == hson[now] || nex == fa[now]) continue;
            dfs2(nex, nex);
        }
    }
}

inline void push_up(int now)
{
    int lson = now << 1, rson = now << 1 | 1;
    tr[now] = tr[lson] + tr[rson];
    if(rcol[lson] == lcol[rson]) tr[now]--;
}

void build(int now, int l, int r)
{
    lcol[now] = col[rnk[l]];
    rcol[now] = col[rnk[r]];
    if(l == r)
    {
        tr[now] = 1;
        return;
    }
    int mid = l + r >> 1;
    build(now << 1, l, mid);
    build(now << 1 | 1, mid + 1, r);
    push_up(now);
}

inline void push_down(int now)
{
    if(tag[now] == 0) return;
    int lson = now << 1, rson = now << 1 | 1;
    tr[lson] = tr[rson] = 1;
    lcol[lson] = rcol[lson] = lcol[rson] = rcol[rson] = tag[lson] = tag[rson] = tag[now];
    tag[now] = 0;
}

void update(int now, int l, int r, int L, int R, int val)
{
    if(R >= r) rcol[now] = val;
    if(L <= l) lcol[now] = val;
    if(L <= l && r <= R)
    {
        tr[now] = 1;
        tag[now] = val;
        return;
    }
    push_down(now);
    int mid = l + r >> 1;
    if(L <= mid) update(now << 1, l, mid, L, R, val);
    if(R > mid) update(now << 1 | 1, mid + 1, r, L, R, val);
    push_up(now);
}

int query_num(int now, int l, int r, int L, int R)
{
    if(L <= l && r <= R)
        return tr[now];
    int mid = l + r >> 1;
    push_down(now);
    if(L <= mid && R > mid)
    {
        int ans = 0;
        ans += query_num(now << 1, l, mid, L, R);
        ans += query_num(now << 1 | 1, mid + 1, r, L, R);
        if(rcol[now << 1] == lcol[now << 1 | 1]) ans--;
        return ans;
    }
    if(L <= mid) return query_num(now << 1, l, mid, L, R);
    if(R > mid) return query_num(now << 1 | 1, mid + 1, r, L, R);
}

int query_col(int now, int l, int r, int way)
{
    if(l == r && l == way) return lcol[now];
    int mid = l + r >> 1;
    push_down(now);
    int ans = 0;
    if(way <= mid) ans = query_col(now << 1, l, mid, way);
    else ans = query_col(now << 1 | 1, mid + 1, r, way);
    push_up(now);
    return ans;
}

void init(int n)
{
    dfs1(1, 1, 1);
    dfs2(1, 1);
    build(1, 1, n);
}

int query_p(int u, int v, int n)
{
    int ans = 0;
    while(top[u] != top[v])
    {
        if(dep[top[u]] < dep[top[v]]) swap(u, v);
        ans += query_num(1, 1, n, dfn[top[u]], dfn[u]);
        if(top[u] != 1 && query_col(1, 1, n, dfn[top[u]]) == query_col(1, 1, n, dfn[fa[top[u]]])) ans--;
        u = fa[top[u]];    
    }
    if(dfn[u] > dfn[v]) swap(u, v);
    ans += query_num(1, 1, n, dfn[u], dfn[v]);
    return ans;
}

void update_p(int u, int v, int x, int n)
{
    while(top[u] != top[v])
    {
        if(dep[top[u]] < dep[top[v]]) swap(u, v);
        update(1, 1, n, dfn[top[u]], dfn[u], x);
        u = fa[top[u]];
    }
    if(dfn[u] > dfn[v]) swap(u, v);
    update(1, 1, n, dfn[u], dfn[v], x);
}

int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i=1; i<=n; i++) scanf("%d", &col[i]);
    for(int i=1; i<n; i++)
    {
        int a, b;
        scanf("%d%d", &a, &b);
        gra[a].push_back(b);
        gra[b].push_back(a);
    }
    init(n);
    char op[10];
    while(m--)
    {
        scanf("%s", op);
        if(op[0] == 'Q')
        {
            int a, b;
            scanf("%d%d", &a, &b);
            printf("%d\n", query_p(a, b, n));
        }
        else
        {
            int a, b, c;
            scanf("%d%d%d", &a, &b, &c);
            update_p(a, b, c, n);
        }
    }
    return 0;
}

标签:洛谷,int,染色,top,dfn,maxn,nex,P2486,now
From: https://www.cnblogs.com/dgsvygd/p/16586677.html

相关文章

  • 洛谷P6812「MCOI-02」Ancestor 先辈
    洛谷P6812对于题目的区间加法明显可以用线段树或树状数组进行并且由题可得,先辈序列即为不下降序列,需满足ai<aj&&i<j判断一个序列是否为先辈我们比较的是一个元素和前一......
  • 洛谷 P6789 - 寒妖王(子集卷积+矩阵树定理)
    洛谷题面传送门像极了我验的那道牛客多校(第六场CForest)……考虑对于每条边,计算其在最大生成基环森林中的概率,乘以边权求和就是答案。现在问题在于如何计算每条边在最大......
  • 8.14 洛谷月赛
    感觉没有tg难\(\rmLink\)目录\(T1\)\(T2\)\(T3\)(主打\(div2\))\(T1\)这个\(T1\)是个神仙题,我甚至为它写了一个\(45pts\)的暴力分然后过去切了\(T2\)再回来看才......
  • Solution -「NOI 2017」「洛谷 P3825」游戏
    \(\mathscr{Description}\)  Link.  给大家看个乐子:link,懒得概括题意啦.\(\mathscr{Solution}\)  对于没有X的情况,显然可以2-SAT;对于有X的情况,暴......
  • Solution -「NOI 2017」「洛谷 P3822」整数
    \(\mathscr{Description}\)  Link.  初始有整数\(x=0\),给出\(n\)次操作,每次操作为\(x\getsx+a\cdot2^b\)或询问\(x\)的第\(k\)bit.  \(n\le10^6\),......