首页 > 其他分享 >嵌入式操作系统内核原理和开发(改进型优先级调度)

嵌入式操作系统内核原理和开发(改进型优先级调度)

时间:2022-11-23 11:37:32浏览次数:43  
标签:index 优先级 %% int 嵌入式操作系统 gAllTask 内核 UINT32


    上面的一篇博客说到了优先级调度,但是那个优先级调度算法比较极端。打个比方说,现在王先生有三个小孩,分别是老大、老二、老三。假设现在到了饭点,王先生需要给三个小孩喂饭。此时如果是时间片轮转的话,那么就是绝对公平,王先生每人一口不停地进行喂饭。如果是优先级调度,那么王先生首先自己有一个优先级考量,比如说三个小孩按照年龄顺序优先级是逐渐提高的,毕竟小孩需要更多的照顾嘛。这个时候如果需要进行喂饭的话,那么王先生需要首先伺候好最小的那个小孩老三,才会有时间照顾老二,至于老大什么时候才能得到照顾那就看造化了。


    现在,我们打算重新换一种方法。假设三个小孩的优先级分别是1、2、3,其中年龄越小优先级越高,3代表高优先级。接着,我们按照优先级给三个小孩安排时间片,分别是1、2、3。同时,这个时间片不光代表了当前可用的剩余时间,还代表了小孩此时的临时优先级。

    (1)首先王先生给老三喂饭,时间片降低1,即临时优先级为2;

    (2)接着王先生判断当前优先级最高的仍为老三,毕竟老二的优先级也没有超过老三,所以老三的时间片降1,临时优先级为1;

    (3)王先生获知当前优先级最高的为老二,老二获得时间片;

    (4)此时王先生发现三个孩子的临时优先级都一样,那么就会按照固定优先级的大小依次对老三、老二、老大进行喂饭。


    我们发现,这中间受益最大的就是老二。当然,我们可以做进一步推论,如果老王的孩子越多,那么优先级处于中间的孩子在时间片的分配上将更加均匀,响应也会更加及时,交互性也会变得很好。


    根据以上的想法,我们重新改写了优先级调度算法,修改为改进型优先级调度算法,

int find_next_thread()
{
int index;
int choice = THREAD_MAX_NUMBER -1;
int value = gAllTask[choice].time_slice;

for(index = choice -1; index >= 0; index --)
{
if(value < gAllTask[index].time_slice)
{
choice = index;
value = gAllTask[index].time_slice;
}
}

if(0 == value)
choice = -1;

return choice;
}

    当然,加上原来的时间片轮转调度、通用优先级调度方法,此时就存在三种调度方法了。我们可以自己设置宏,通过宏的设置灵活选用调度算法,

#define TIME_ROUND_SCHEDULE     0
#define HARD_PRIORITY_SCHEDULE 0
#define SOFT_PRIORITY_SCHEDULE 1


    这些代码都是可以在系统中共存的。选用什么算法,取决于实际情况是什么样的情形。


#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <signal.h>
#include <assert.h>
#include <string.h>
#include <sys/time.h>

#define UINT32 unsigned int
#define STACK_LENGTH 512
#define THREAD_MAX_NUMBER 10
#define TIME_ROUND_SCHEDULE 0
#define HARD_PRIORITY_SCHEDULE 0
#define SOFT_PRIORITY_SCHEDULE 1

typedef struct _TASK_INFO
{
UINT32 id;
UINT32* stack;
UINT32 size;
UINT32 context;
UINT32 priority;
UINT32 time_slice;
void (*func)();

}TASK_INFO;

static struct itimerval oldtv;
UINT32 old = 0;
UINT32 count = 0;
UINT32 task_stack[THREAD_MAX_NUMBER][STACK_LENGTH] = {0};
TASK_INFO gAllTask[THREAD_MAX_NUMBER] = {0};
UINT32 current_thread_id = 0;

void set_timer()
{
struct itimerval itv;
itv.it_interval.tv_sec = 1;
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = 1;
itv.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, &oldtv);
}

void swap(UINT32* prev, UINT32* next)
{
__asm("push %%eax\n\t"
"push %%ebx\n\t"
"push %%ecx\n\t"
"push %%edx\n\t"
"push %%esi\n\t"
"push %%edi\n\t"
"push %%ebp\n\t"
"push %%esp\n\t"
"lea 0x8(%%ebp), %%eax\n\t"
"mov (%%eax), %%eax\n\t"
"mov %%esp, (%%eax)\n\t"

"lea 0xc(%%ebp), %%eax\n\t"
"mov (%%eax), %%eax\n\t"
"mov (%%eax), %%esp\n\t"
"pop %%esp\n\t"
"pop %%ebp\n\t"
"pop %%edi\n\t"
"pop %%esi\n\t"
"pop %%edx\n\t"
"pop %%ecx\n\t"
"pop %%ebx\n\t"
"pop %%eax\n\t"
::);
}

void hello()
{
int temp = 0;

while(1) {
printf("id = %d, temp = %d, count = %d in thread!\n",current_thread_id, temp ++, count ++);
swap(&gAllTask[current_thread_id].context, &old);

printf("id = %d, temp = %d, count = %d in thread!\n",current_thread_id, temp ++, count ++);
swap(&gAllTask[current_thread_id].context, &old);
}
}

#if HARD_PRIORITY_SCHEDULE
int find_next_thread()
{
int index;

for(index = THREAD_MAX_NUMBER -1; index >=0; index --)
{
if(0 != gAllTask[index].time_slice)
break;
}

return index;
}

#endif


#if SOFT_PRIORITY_SCHEDULE
int find_next_thread()
{
int index;
int choice = THREAD_MAX_NUMBER -1;
int value = gAllTask[choice].time_slice;

for(index = choice -1; index >= 0; index --)
{
if(value < gAllTask[index].time_slice)
{
choice = index;
value = gAllTask[index].time_slice;
}
}

if(0 == value)
choice = -1;

return choice;
}

#endif

void reset_time_slice ()
{
int index;

for(index = 0; index < THREAD_MAX_NUMBER; index++)
gAllTask[index].time_slice = gAllTask[index].priority + 1;
}

void task_init(int index)
{
UINT32 unit = gAllTask[index].size;
UINT32* pData = gAllTask[index].stack;

memset((void*)pData,(int) 0, unit * sizeof(UINT32));
pData[unit -1] = (UINT32) gAllTask[index].func;
pData[unit -2] = 0;
pData[unit -3] = 0;
pData[unit -4] = 0;
pData[unit -5] = 0;
pData[unit -6] = 0;
pData[unit -7] = 0;
pData[unit -8] = 0;
pData[unit -9] = 0;
pData[unit -10] = (UINT32) &pData[unit - 9];
gAllTask[index].context = (UINT32) &pData[unit -10];
}

#if TIME_ROUND_SCHEDULE
void signal_handler(int m)
{
current_thread_id = current_thread_id % THREAD_MAX_NUMBER;
swap(&old, &gAllTask[current_thread_id].context);
current_thread_id ++;
}

#else
void signal_handler(int m)
{
int index;

start:
index = find_next_thread();
if(-1 == index)
{
reset_time_slice();
goto start;
}

gAllTask[index].time_slice --;
current_thread_id = index;
swap(&old, &gAllTask[current_thread_id].context);
}
#endif


void set_all_task()
{
int index;
memset(gAllTask, 0, sizeof(gAllTask));

for(index = 0; index < THREAD_MAX_NUMBER; index ++)
{
gAllTask[index].id = index;
gAllTask[index].stack = task_stack[index];
gAllTask[index].size = STACK_LENGTH;
gAllTask[index].context = 0;
gAllTask[index].func = hello;
gAllTask[index].priority = index;
gAllTask[index].time_slice = index + 1;

task_init(index);
}
}

int main()
{
char val;

set_all_task();
set_timer();
signal(SIGALRM, signal_handler);

while(1)
{
scanf("%c", &val);
}

exit(0);
return 1;
}



标签:index,优先级,%%,int,嵌入式操作系统,gAllTask,内核,UINT32
From: https://blog.51cto.com/feixiaoxing/5880695

相关文章