Ultra-QuickSort
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
这题是一道裸的求逆序对题,可以用树状数组或归并排序来求,可以当作树状数组的经典入门题。下面附上树状数组写法。
归并排序写法
Code:
var标签:begin,end,sequence,POJ2299,QuickSort,longint,ans,input,Ultra From: https://blog.51cto.com/u_15888102/5878361
n,i:longint;ans:int64;
a,p,tree:array[0..500000] of longint;
procedure sort(l,r:longint);
var i,j,x,y:longint;
begin
i:=l;j:=r;x:=a[(l+r) div 2];
repeat
while (a[i]<x) do inc(i);
while (a[j]>x) do dec(j);
if not(i>j) then
begin
y:=a[i];a[i]:=a[j];a[j]:=y;
y:=p[i];p[i]:=p[j];p[j]:=y;
inc(i);dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end;
procedure add(k:longint);
begin
while k<=n do
begin
inc(tree[k]);
k:=k+(k) and (-k);
end;
end;
function sum(k:longint):longint;
var ans:longint;
begin
ans:=0;
while k>0 do
begin
ans:=ans+tree[k];
k:=k-(k) and (-k);
end;
exit(ans);
end;
begin
readln(n);
while n<>0 do
begin
for i:=1 to n do
begin
read(a[i]);
p[i]:=i;
end;
sort(1,n);
ans:=0;
for i:=1 to n do a[p[i]]:=i;
fillchar(tree,sizeof(tree),0);
for i:=1 to n do
begin
add(a[i]);
ans:=ans+i-sum(a[i]);
end;
writeln(ans);
readln(n);
end;
end.