首页 > 其他分享 >Mathematics for Computer Science1--Proofs

Mathematics for Computer Science1--Proofs

时间:2022-11-21 16:24:23浏览次数:57  
标签:proposition predicate false -- Science1 truth Mathematics true proof

Simply put, a proof is a method of establishing truth. Like beauty, “truth” sometimes depends on the eye of the beholder, and it should not be surprising that what constitutes a proof differs among fields. For example, in the judicial system, legal truth is decided by a jury based on the allowable evidence presented at trial. In the business world, authoritative truth is specifified by a trusted person or organization,or maybe just your boss. In fifields such as physics and biology, scientifific truth1 is confifirmed by experiment. In statistics, probable truth is established by statistical analysis of sample data. Philosophical proof involves careful exposition and persuasion typically based on a series of small, plausible arguments. The best example begins with “Cogitoergo sum,” a Latin sentence that translates as “I think, therefore I am.” It comes from the beginning of a 17th century essay by the mathematician/philosopher, Ren´eDescartes, and it is one of the most famous quotes in the world: do a web search on the phrase and you will be flflooded with hits. Deducing your existence from the fact that you’re thinking about your existenceis a pretty cool and persuasive-sounding idea. However, with just a few more lines of argument in this vein, Descartes goes on to conclude that there is an infifinitely benefificent God. Whether or not you believe in a benefificent God, you’ll probably agree that any very short proof of God’s existence is bound to be far-fetched. So even in masterful hands, this approach is not reliable.   Mathematics has its own specifific notion of “proof.” Defifinition. A mathematical proof of a proposition is a chain of logical deductions leading to the proposition from a base set of axioms. The three key ideas in this defifinition are highlighted: proposition, logical deduction, and axiom. These three ideas are explained in the following chapters,beginning with propositions in Chapter 1. We will then provide lots of examples of proofs and even some examples of “false proofs” (that is, arguments that look like a proof but that contain missteps, or deductions that aren’t so logical when examined closely). False proofs are often even more important as examples than correct proofs, because they are uniquely helpful with honing your skills at making sure each step of a proof follows logically from prior steps.  

Propositions

Defifinition. A proposition is a statement that is either true or false. eg, Proposition 1.0.1.    2 + 3 = 5. Proposition 1.0.2.   1 + 1 = 3.

Compound Propositions

In general, a truth table indicates the true/false value of a proposition for each possible setting of the variables. 

We can precisely defifine these special words using truth tables.

NOT, AND, and OR If P and Q denotes an arbitrary proposition, then the truth of the propositions is defifined by the following truth table:      

 

 

 

An implication is true exactly when the if-part is false or the then-part is true. p->q,说明p是q的子集  

 

The proposition “P if and only if Q” asserts that P and Q are logically equivalent; that is, either both are true or both are false.

Notation

 

 

Predicates and Quantififiers

 

A predicate is a proposition whose truth depends on the value of one or more variables.a function-like notation is used to denote a predicate supplied with specifific variable values. For example, we might name our earlier predicate P: P (n) :: = “n is a perfect square”   There are a couple of assertions commonly made about a predicate: that it is some times true and that it is always true.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

标签:proposition,predicate,false,--,Science1,truth,Mathematics,true,proof
From: https://www.cnblogs.com/xiangsplayground/p/16911771.html

相关文章

  • WordPress编辑器支持PowerPoint自动粘贴
    ​ 1.编辑器修改(可选)1.1在 ueditor/config.json 中添加代码块    /* 上传word配置 */    "wordActionName":"wordupload",/* 执行上传视频的action......
  • Centos 7 部署Kubernetes集群
    前言基础描述从k8s1.24开始,dockershim已经从kubelet中移除,但因为历史问题docker却不支持kubernetes主推的CRI(容器运行时接口)标准,所以docker不能再作为k8s的容器运行时......
  • [推荐系统]粗排之COLD
    目录1引言2COLD结构3COLD的工程优化1引言COLD全程:Computingpowercost-awareOnlineandLightweightDeeppre-rankingsystem。是阿里巴巴提出的,主要用于推荐中的......
  • 图文并茂解释开源许可证 GPL、BSD、MIT、Mozilla、Apache和LGPL的区别
    什么是开源许可证?(“OpenSourceLicense”) 首先需要明确的是,开源软件源代码的著作权既没有被放弃也没有过期,其修改和发行等仍然要受到著作权法或者开源软件许可证的制......
  • iOS上架的坑
     有3D-touch机型的坑昨天在上线的时候遇到了一个坑,最后导致的结果是找了好几个小时,直接到半夜才能上线。入正题:坑是:项目运行在456上没什么问题,但是在6S以上的机型就有......
  • ABC262F
    ABC262F*2334卡手的构造题,不是很难想,主要是细节比较多。题意给定一个排列\(p\)。你可以最多执行\(k\)次操作。删除一个数。将\(p\)中末尾的数移到开头。找出......
  • httprunner运行遇到彻底解决安装包过程中的Requirement already satisfied:问题
      deMacBook-Pro:bndcsyuansanmei$python3-mpipinstallhttprunner==v4.3.0Requirementalreadysatisfied:httprunner==v4.3.0in/Users/y/Library/Python/3......
  • Linux磁盘空间不足的处理思路
    Linux磁盘空间不足的处理思路:第一步:查看磁盘占用的空间df-h确定磁盘剩余空间,哪个磁盘占用比较大第二步:查看文件夹大小du-h文件夹通常日志文件由于长时间写入不......
  • SpringBean生命周期
    SpringBean生命周期(~)简述:实例化(instantiateBean)——属性赋值(populateBean)——初始化(init)——销毁(destroy)详细:创建bean通过xml/注解@(Bean)。。等等方式注册bea......
  • ENVI新机器学习之异常探测分类工具操作手册
    异常探测是一种用于定位数据集中异常点的数据处理技术。异常值是指与数据集中的已知特征相比被认为不正常的值。例如,如果水是已知的特征,那么除水之外的任何东西都将被视为......