首页 > 其他分享 >Kafka(2)- consumer

Kafka(2)- consumer

时间:2022-11-21 10:56:33浏览次数:55  
标签:消费 partition Kafka records 线程 new consumer

1. 基本概念

  消费kafka消息的客户端称为consumer,consumer负责订阅kafka的topic,并从该topic上拉取消息。除了consumer本身,kafka还有一个消费组(consumer group)的概念。每个kafka consumer都属于一个消费者组,一条消息只会被一个消费者组内的一个消费者消费,因此一个消费者组内消费者的数量一般不会超过分区的数量。例如,某个主题共有4个分区:P0, P1, P2, P3;有两个消费者组A, B;A中有四个消费者(C0, C1, C2, C3),B中有两个消费者(C4, C5),则A中每个消费者分配到1个分区,B中每个消费者分配到两个分区,消费分配情况如下:

图1 消费者和消费者组 consumer的使用过程一般是: (1)初始化一个consumer; (2)订阅主题或分区; (3)拉取消息并消费; (4)消费位移提交。 整个过程的代码如下(消费位移一般设置为自动提交):
public void consume() {
    // 1. 初始化client
    Properties props =      new Properties();
    props.put(     "key.deserializer" ,      "org.apache.kafka.common.serialization.StringDeserializer" );
    props.put(     "value.deserializer" ,      "org.apache.kafka.common.serialization.StringDeserializer" );
    props.put(     "bootstrap.servers" , brokerList);
    props.put(     "group.id" , groupId); 
    props.put(     "client.id" ,      "XXX" )
    KafkaConsumer<string, string=""> consumer =      new KafkaConsumer<>(props);
    // 2. 订阅主题
    consumer.subscribe(topics)
    // 3. 消费消息
    try {
        while (running) {
            ConsumerRecords<string, string=""> records = consumer.poll(timeout);      // 拉取消息
            for (ConsumerRecord<string, string=""> record: records) {
                // 消费消息
            }
        }
    }      catch (Exception e) {
        log.error(     "..." )
    }      finally {
        consumer.close()
    }
}</string,></string,></string,>

下面从consumer的使用流程上,来介绍每个部分的一些细节问题。

2. 初始化consumer

  消费者有很多配置参数,都在ConsumerConfig当中,其中必须有KeyDeserializer, ValueDeserializer, bootstrap.servers。消费者有消费者组的概念,一条消息只会被同一个消费组内的一个消费者消费,通过指定groupId,来确定一个consumer属于哪一个group, groupId不能为空。

  consumer不是线程安全的,不能多线程并发消费,在KafkaConsumer内部,有一个light lock(轻量级锁),用于防止多线程访问同一个consumer,通过aquire()和release()方法,防止并发访问。

private void acquire() {
    long threadId = Thread.currentThread().getId();
    if (threadId != currentThread.get() && !currentThread.compareAndSet(NO_CURRENT_THREAD, threadId))
        throw new ConcurrentModificationException("KafkaConsumer is not safe for multi-threaded access");
    refcount.incrementAndGet();
}

private void release() {
    if (refcount.decrementAndGet() == 0)
        currentThread.set(NO_CURRENT_THREAD);
}
为了提高消费速度,衍生出了两种常见的消费模式:
  • One consumer per thread(一个线程一个消费者)
  每一个线程拥有一个consumer,负责对接一个或多个partition,consumer线程先获取数据然后进行处理。这种模式实现起来较为简单,并且每个线程处理的数据都是基于分区有序的,同时方便采用手动提交offset。该方式的缺点是处理数据的能力受到分区数量的限制(因为消费线程的数量不能超过分区数),对于处理单条数据很耗时的操作,消费能力可能跟不上生产能力。
  • Decouple consumption and process(消费线程和数据处理线程解耦)
  将消费数据和处理数据进行解耦,一个或多个消费线程负责消费数据,将消费到的数据放入blockQueue中,然后开启一个线程池负责处理数据。此方式处理能力跟线程池的线程数有关系,可以方便扩展消费线程和处理数据的线程。但是不能保证单分区的记录处理的顺序性,因此也不适合在消费线程里采用手动提交offset

3. 订阅主题

kafka通过subscribe方法,实现数据订阅。subscribe共有四个重载方法:

public void subscribe(Collection<String> topics, ConsumerRebalanceListener listener);
public void subscribe(Collection<String> topics);
public void subscribe(Pattern pattern, ConsumerRebalanceListener listener);
public void subscribe(Pattern pattern);

也可以通过assign方法,指定订阅某个分区的数据:

public void assign(Collection<TopicPartition> partitions)
订阅的本质就是将对应的topic或者partition记录到KafkaConsumer的订阅状态中,底层都是调用SubscriptionState.subscribe()方法(SubscriptionState是用来记录KafkaConsumer的topics, partions, offset信息的类),以其中一个方法为例:
public void subscribe(Collection<String> topics, ConsumerRebalanceListener listener) {
    acquireAndEnsureOpen(); // 调用aquire方法获取light lock,并确认consumer不是close状态
    try {
        maybeThrowInvalidGroupIdException(); // 检查groupId的有效性(不能为空)
        if (topics == null)
            throw new IllegalArgumentException("Topic collection to subscribe to cannot be null");
        if (topics.isEmpty()) { 
            // treat subscribing to empty topic list as the same as unsubscribing
            this.unsubscribe(); // 如果传空list,等效于unsubscribe
        } else {
            for (String topic : topics) {
                if (Utils.isBlank(topic))
                    throw new IllegalArgumentException("Topic collection to subscribe to cannot contain null or empty topic");
            }

            throwIfNoAssignorsConfigured();
            fetcher.clearBufferedDataForUnassignedTopics(topics); // 清除还没消费完的缓存数据(1)
            log.info("Subscribed to topic(s): {}", Utils.join(topics, ", "));
            if (this.subscriptions.subscribe(new HashSet<>(topics), listener)) // (2)
                metadata.requestUpdateForNewTopics(); // subscriptions为SubscriptionState类,如果有新的topic加入,需要重新获取元信息
        }
    } finally {
        release(); // 释放light lock
    }
}

3. 拉取消息并消费

拉取信息调用的是KafkaConsumer.poll()函数,该函数的实现如下:

private ConsumerRecords<K, V> poll(final Timer timer, final boolean includeMetadataInTimeout) {
    acquireAndEnsureOpen(); // 获取cnsumer light lock并确认consumer不是close状态
    try {
        this.kafkaConsumerMetrics.recordPollStart(timer.currentTimeMs());

        if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) {
            throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
        }

        do {
            client.maybeTriggerWakeup();

            if (includeMetadataInTimeout) {
                // try to update assignment metadata BUT do not need to block on the timer for join group
                updateAssignmentMetadataIfNeeded(timer, false);
            } else {
                while (!updateAssignmentMetadataIfNeeded(time.timer(Long.MAX_VALUE), true)) {
                    log.warn("Still waiting for metadata");
                }
            }

            final Fetch<K, V> fetch = pollForFetches(timer);
            if (!fetch.isEmpty()) {
                // before returning the fetched records, we can send off the next round of fetches
                // and avoid block waiting for their responses to enable pipelining while the user
                // is handling the fetched records.
                //
                // NOTE: since the consumed position has already been updated, we must not allow
                // wakeups or any other errors to be triggered prior to returning the fetched records.
                if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) {
                    client.transmitSends();
                }

                if (fetch.records().isEmpty()) {
                    log.trace("Returning empty records from `poll()` "
                            + "since the consumer's position has advanced for at least one topic partition");
                }

                return this.interceptors.onConsume(new ConsumerRecords<>(fetch.records()));
            }
        } while (timer.notExpired());

        return ConsumerRecords.empty();
    } finally {
        release();
        this.kafkaConsumerMetrics.recordPollEnd(timer.currentTimeMs());
    }
}
View Code

该函数底层调用的是Fetcher类相关的函数。Fetcher是KafkaConsumer用于和NetworkClient交互的一个类,用于包装发送请求,获取响应消息。

3.1 Fetcher

  上面介绍,Fetcher是KafkaConsumer用于和NetworkClient交互的一个类,负责包装拉取消息,元数据更新,获取消费位移等请求,并调用ConsumerNetworkClient(NetworkClient的客户端实现)的send方法和poll方法;同时负责解析收到的数据,包装成List<ConsumerRecord<K, V>>,相当于producer端的sender。对应的方法如下:

发送拉取请求: 

public synchronized int sendFetches() {
    // Update metrics in case there was an assignment change
    sensors.maybeUpdateAssignment(subscriptions);

    Map<Node, FetchSessionHandler.FetchRequestData> fetchRequestMap = prepareFetchRequests(); // 选取没有in-flight request的leader, 包装成map<node, requests>的形式
    for (Map.Entry<Node, FetchSessionHandler.FetchRequestData> entry : fetchRequestMap.entrySet()) {
        final Node fetchTarget = entry.getKey();
        final FetchSessionHandler.FetchRequestData data = entry.getValue();
        final short maxVersion;
        if (!data.canUseTopicIds()) {
            maxVersion = (short) 12;
        } else {
            maxVersion = ApiKeys.FETCH.latestVersion();
        }
        final FetchRequest.Builder request = FetchRequest.Builder
                .forConsumer(maxVersion, this.maxWaitMs, this.minBytes, data.toSend())
                .isolationLevel(isolationLevel)
                .setMaxBytes(this.maxBytes)
                .metadata(data.metadata())
                .removed(data.toForget())
                .replaced(data.toReplace())
                .rackId(clientRackId);

        if (log.isDebugEnabled()) {
            log.debug("Sending {} {} to broker {}", isolationLevel, data.toString(), fetchTarget);
        }
        // 调用client.send(),发送请求。client.send为异步接口,不做实际的发送动作,底层仍然是调用client.poll()
        RequestFuture<ClientResponse> future = client.send(fetchTarget, request);
        // 注册回调函数
        this.nodesWithPendingFetchRequests.add(entry.getKey().id());
        future.addListener(new RequestFutureListener<ClientResponse>() {
            @Override
            public void onSuccess(ClientResponse resp) {
                synchronized (Fetcher.this) {
                    try {
                        FetchResponse response = (FetchResponse) resp.responseBody();
                        FetchSessionHandler handler = sessionHandler(fetchTarget.id());
                        if (handler == null) {
                            log.error("Unable to find FetchSessionHandler for node {}. Ignoring fetch response.",
                                    fetchTarget.id());
                            return;
                        }
                        if (!handler.handleResponse(response, resp.requestHeader().apiVersion())) {
                            if (response.error() == Errors.FETCH_SESSION_TOPIC_ID_ERROR) {
                                metadata.requestUpdate();
                            }
                            return;
                        }
                        // 将response封装成map<TopicPartition, PartitionData>的格式
                        Map<TopicPartition, FetchResponseData.PartitionData> responseData = response.responseData(handler.sessionTopicNames(), resp.requestHeader().apiVersion());
                        Set<TopicPartition> partitions = new HashSet<>(responseData.keySet());
                        FetchResponseMetricAggregator metricAggregator = new FetchResponseMetricAggregator(sensors, partitions);

                        for (Map.Entry<TopicPartition, FetchResponseData.PartitionData> entry : responseData.entrySet()) {
                            TopicPartition partition = entry.getKey();
                            FetchRequest.PartitionData requestData = data.sessionPartitions().get(partition);
                            if (requestData == null) {
                                String message;
                                if (data.metadata().isFull()) {
                                    message = MessageFormatter.arrayFormat(
                                            "Response for missing full request partition: partition={}; metadata={}",
                                            new Object[]{partition, data.metadata()}).getMessage();
                                } else {
                                    message = MessageFormatter.arrayFormat(
                                            "Response for missing session request partition: partition={}; metadata={}; toSend={}; toForget={}; toReplace={}",
                                            new Object[]{partition, data.metadata(), data.toSend(), data.toForget(), data.toReplace()}).getMessage();
                                }

                                // Received fetch response for missing session partition
                                throw new IllegalStateException(message);
                            } else {
                                long fetchOffset = requestData.fetchOffset;
                                FetchResponseData.PartitionData partitionData = entry.getValue();

                                log.debug("Fetch {} at offset {} for partition {} returned fetch data {}",
                                        isolationLevel, fetchOffset, partition, partitionData);

                                Iterator<? extends RecordBatch> batches = FetchResponse.recordsOrFail(partitionData).batches().iterator();
                                short responseVersion = resp.requestHeader().apiVersion();
                                // 结果添加到completedFetches
                                completedFetches.add(new CompletedFetch(partition, partitionData,
                                        metricAggregator, batches, fetchOffset, responseVersion));
                            }
                        }

                        sensors.fetchLatency.record(resp.requestLatencyMs());
                    } finally {
                        nodesWithPendingFetchRequests.remove(fetchTarget.id());
                    }
                }
            }

            @Override
            public void onFailure(RuntimeException e) {
                synchronized (Fetcher.this) {
                    try {
                        FetchSessionHandler handler = sessionHandler(fetchTarget.id());
                        if (handler != null) {
                            handler.handleError(e);
                        }
                    } finally {
                        nodesWithPendingFetchRequests.remove(fetchTarget.id());
                    }
                }
            }
        });

    }
    return fetchRequestMap.size();
}
View Code

获取拉取响应:

public Fetch<K, V> collectFetch() {
    Fetch<K, V> fetch = Fetch.empty();
    Queue<CompletedFetch> pausedCompletedFetches = new ArrayDeque<>();
    int recordsRemaining = maxPollRecords;

    try {
        while (recordsRemaining > 0) {
            if (nextInLineFetch == null || nextInLineFetch.isConsumed) {
                CompletedFetch records = completedFetches.peek();
                if (records == null) break;

                if (records.notInitialized()) {
                    try {
                        // 将CompletedFetch包装成nextInLineFetch
                        nextInLineFetch = initializeCompletedFetch(records);
                    } catch (Exception e) {
                        // Remove a completedFetch upon a parse with exception if (1) it contains no records, and
                        // (2) there are no fetched records with actual content preceding this exception.
                        // The first condition ensures that the completedFetches is not stuck with the same completedFetch
                        // in cases such as the TopicAuthorizationException, and the second condition ensures that no
                        // potential data loss due to an exception in a following record.
                        FetchResponseData.PartitionData partition = records.partitionData;
                        if (fetch.isEmpty() && FetchResponse.recordsOrFail(partition).sizeInBytes() == 0) {
                            completedFetches.poll();
                        }
                        throw e;
                    }
                } else {
                    nextInLineFetch = records;
                }
                completedFetches.poll();
            } else if (subscriptions.isPaused(nextInLineFetch.partition)) {
                // when the partition is paused we add the records back to the completedFetches queue instead of draining
                // them so that they can be returned on a subsequent poll if the partition is resumed at that time
                log.debug("Skipping fetching records for assigned partition {} because it is paused", nextInLineFetch.partition);
                pausedCompletedFetches.add(nextInLineFetch);
                nextInLineFetch = null;
            } else {
                Fetch<K, V> nextFetch = fetchRecords(nextInLineFetch, recordsRemaining);
                recordsRemaining -= nextFetch.numRecords();
                fetch.add(nextFetch);
            }
        }
    } catch (KafkaException e) {
        if (fetch.isEmpty())
            throw e;
    } finally {
        // add any polled completed fetches for paused partitions back to the completed fetches queue to be
        // re-evaluated in the next poll
        completedFetches.addAll(pausedCompletedFetches);
    }

    return fetch;
}
View Code KafkaConsumer和Fetcher类的交互过程如下图所示:

 

图2 kafka consumer和Fetcher的交互过程

整个流程为:KafkaConsumer.poll() -> Fetcher.collectFetch() -> 有数据,直接返回/没数据,继续调用 -> Fetcher.sendFetches() -> client.poll()/client.send() -> 异步数据接收并填充到Fetcher.completedFetches。这样下一次调用到collectFetch时就有数据了。

4. 位移提交

  位移提交,就是把当前消费到的消息的offset,反馈给服务端,记录消费的结果。一般情况下,我们都使用kafka的自动位移提交。当然KafkaConsumer也提供了手动提交位移的函数,分别是:

// 异步提交offset
public void commitAsync(final Map<TopicPartition, OffsetAndMetadata> offsets, OffsetCommitCallback callback)

// 同步提交offset
public void commitSync(final Map<TopicPartition, OffsetAndMetadata> offsets, final Duration timeout)
位移提交实际上是调用GroupCoordinator的相关函数,具体细节在GroupCoordinator介绍。

5. 总结

kafka consumer整体使用流程较为简单,需要重点注意以下几点:

(1)kafka consumer不是线程安全的,不能多线程共享一个consumer。因此在编写consumer对应的代码时,需要设计好对应的消费模型,见第二节的讲述。

(2)kafka的consumer支持使用subscribe()订阅主题,同时默认是自动rebalance。但是如果通过assign()指定partition进行消费,则不能进行rebalance。rebalance受到很多kafka配置参数的影响,实际使用时,可能导致频繁的rebalance,因此有些场合也会选择手动执行rebalance,并添加对于partition消费的lag的监控。

(3)一般情况下,一个partition只会被同一个group内的一个消费者消费,但是这个限制也可以打破,比如通过assign将多个消费者指定到了同一个partition。这种消费场景一定要注意消费位移的顺序提交问题,实际实现顺序提交消费位移是非常困难的,因此在实际使用中非常不建议这种方式。在大流量的场景下,最常用的消费模型是多个消费者线程+多个消息处理线程,如下:

图3 大流量常用的消费模型

使用这种消费模型消费者和处理线程解耦,可以横向拓展消息处理能力,不受partition数量的影响。但是这种模型是异步提交消费位移,所以当MessageHandler出错时,需要设计一套额外的机制,实现错误重试。

 

 

标签:消费,partition,Kafka,records,线程,new,consumer
From: https://www.cnblogs.com/yuanwebpage/p/16898687.html

相关文章

  • kafka笔记
    基本概念Broker每个Broker相当于一个服务器,多个Broker构成了一个kafka集群Topic主题做消息分类,一个Broker可以包含多个TopicPartition分区,一个Topic包含多个分区,分区......
  • 用 Kafka + DolphinDB 实时计算K线
    Kafka是一个高吞吐量的分布式消息中间件,可用于海量消息的发布和订阅。当面对大量的数据写入时,以消息中间件接收数据,然后再批量写入到时序数据库中,这样可以将消息中间件的高......
  • 一个基于jmeter的kafka的压测工具
    背景:由于工作中经常需要对微服务的性能进行测试,项目中的业务场景也多是对数据的处理,因此就有对消息中间件进行高性能生产消息的诉求,当前数据来源多是通过kafka,因此想研究......
  • Pulsar & Kafka
     PulsarSummitAsia2022Kafka与Pulsar对比详解                            *[ApacheKafka分......
  • springboot整合kafka
    1.引入kakka依赖<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency>2.修改配置文件#应用名称......
  • Kafka硬件配置选择
    场景:100万日活(中型公司),每人每天100条日志,每天总共的日志条数是100万*100条=1亿条。其日志处理速度为:1亿条/24小时/60分/60秒≈1157条/每秒钟。 假设每条日志大小......
  • Kafka的使用
    一、启动Zookeeper服务在Windows系统中打开第1个cmd窗口,启动Zookeeper服务:>cdc:\kafka_2.12-2.4.0>.\bin\windows\zookeeper-server-start.bat.\config\zookeeper.......
  • kafka集群压力测试
    1)Kafka压测用Kafka官方自带的脚本,对Kafka进行压测。Kafka压测时,可以查看到哪个地方出现了瓶颈(CPU,内存,网络IO)。一般都是网络IO达到瓶颈。kafka-consumer-perf-test.shkaf......
  • kafka集群启动脚本失效
    问题描述:之前写的kafka集群启动脚本,今天重启服务器后失效了,只启动了本地的kafka1,另一台虚拟机上的kafka2没启动也没有日志#!/bin/bashcase$1in"start"){......
  • zabbix监控kafka消费
    目录一、Kafka监控的几个指标二、查看zookeeper配置三、查看kafka配置四、查看kafka的groupname五、查看kafka的topic_name六、修改zabbix配置文件......