首页 > 其他分享 >14 SDK开发

14 SDK开发

时间:2022-11-20 15:55:06浏览次数:69  
标签:14 ioctx Supported ceph cluster 开发 key rbd SDK

目录

SDK 开发概述

Introduction to librados

The Ceph Storage Cluster provides the basic storage service that allows
Ceph to uniquely deliver object, block, and file storage in one
unified system. However, you are not limited to using the RESTful, block, or
POSIX interfaces. Based upon RADOS, the librados API enables you to create your own interface to the
Ceph Storage Cluster.

The librados API enables you to interact with the two types of daemons in
the Ceph Storage Cluster:

  • The Ceph Monitor, which maintains a master copy of the cluster map.
  • The Ceph OSD Daemon (OSD), which stores data as objects on a storage node.

This guide provides a high-level introduction to using librados.
Refer to Architecture for additional details of the Ceph
Storage Cluster. To use the API, you need a running Ceph Storage Cluster.
See Installation (Quick) for details.

Step 1: Getting librados

Your client application must bind with librados to connect to the Ceph
Storage Cluster. You must install librados and any required packages to
write applications that use librados. The librados API is written in
C++, with additional bindings for C, Python, Java and PHP.

Getting librados for Python

The rados module provides librados support to Python
applications. You may install python3-rados for Debian, Ubuntu, SLE or
openSUSE or the python-rados package for CentOS/RHEL.

To install librados development support files for Python on Debian/Ubuntu
distributions, execute the following:

sudo apt-get install python3-rados

To install librados development support files for Python on RHEL/CentOS
distributions, execute the following:

sudo yum install python-rados

To install librados development support files for Python on SLE/openSUSE
distributions, execute the following:

sudo zypper install python3-rados

You can find the module under /usr/share/pyshared on Debian systems,
or under /usr/lib/python*/site-packages on CentOS/RHEL systems.

Step 2: Configuring a Cluster Handle

A Ceph Client, via librados, interacts directly with OSDs to store
and retrieve data. To interact with OSDs, the client app must invoke
librados and connect to a Ceph Monitor. Once connected, librados
retrieves the Cluster Map from the Ceph Monitor. When the client app
wants to read or write data, it creates an I/O context and binds to a
Pool. The pool has an associated CRUSH rule that defines how it
will place data in the storage cluster. Via the I/O context, the client
provides the object name to librados, which takes the object name
and the cluster map (i.e., the topology of the cluster) and computes the
placement group and OSD for locating the data. Then the client application
can read or write data. The client app doesn’t need to learn about the topology
of the cluster directly.

The Ceph Storage Cluster handle encapsulates the client configuration, including:

  • The user ID for rados_create() or user name for rados_create2()
    (preferred).
  • The cephx authentication key
  • The monitor ID and IP address
  • Logging levels
  • Debugging levels

Thus, the first steps in using the cluster from your app are to 1) create
a cluster handle that your app will use to connect to the storage cluster,
and then 2) use that handle to connect. To connect to the cluster, the
app must supply a monitor address, a username and an authentication key
(cephx is enabled by default).

Tip

Talking to different Ceph Storage Clusters – or to the same cluster
with different users – requires different cluster handles.

RADOS provides a number of ways for you to set the required values. For
the monitor and encryption key settings, an easy way to handle them is to ensure
that your Ceph configuration file contains a keyring path to a keyring file
and at least one monitor address (e.g., mon_host). For example:

[global]
mon_host = 192.168.1.1
keyring = /etc/ceph/ceph.client.admin.keyring

Once you create the handle, you can read a Ceph configuration file to configure
the handle. You can also pass arguments to your app and parse them with the
function for parsing command line arguments (e.g., rados_conf_parse_argv()),
or parse Ceph environment variables (e.g., rados_conf_parse_env()). Some
wrappers may not implement convenience methods, so you may need to implement
these capabilities. The following diagram provides a high-level flow for the
initial connection.

Once connected, your app can invoke functions that affect the whole cluster
with only the cluster handle. For example, once you have a cluster
handle, you can:

  • Get cluster statistics
  • Use Pool Operation (exists, create, list, delete)
  • Get and set the configuration

One of the powerful features of Ceph is the ability to bind to different pools.
Each pool may have a different number of placement groups, object replicas and
replication strategies. For example, a pool could be set up as a “hot” pool that
uses SSDs for frequently used objects or a “cold” pool that uses erasure coding.

The main difference in the various librados bindings is between C and
the object-oriented bindings for C++, Java and Python. The object-oriented
bindings use objects to represent cluster handles, IO Contexts, iterators,
exceptions, etc.

Python Example

Python uses the admin id and the ceph cluster name by default, and
will read the standard ceph.conf file if the conffile parameter is
set to the empty string. The Python binding converts C++ errors
into exceptions.

import rados

try:
        cluster = rados.Rados(conffile='')
except TypeError as e:
        print('Argument validation error: {}'.format(e))
        raise e

print("Created cluster handle.")

try:
        cluster.connect()
except Exception as e:
        print("connection error: {}".format(e))
        raise e
finally:
        print("Connected to the cluster.")

Execute the example to verify that it connects to your cluster.

python ceph-client.py

Step 3: Creating an I/O Context

Once your app has a cluster handle and a connection to a Ceph Storage Cluster,
you may create an I/O Context and begin reading and writing data. An I/O Context
binds the connection to a specific pool. The user must have appropriate
CAPS permissions to access the specified pool. For example, a user with read
access but not write access will only be able to read data. I/O Context
functionality includes:

  • Write/read data and extended attributes
  • List and iterate over objects and extended attributes
  • Snapshot pools, list snapshots, etc.

RADOS enables you to interact both synchronously and asynchronously. Once your
app has an I/O Context, read/write operations only require you to know the
object/xattr name. The CRUSH algorithm encapsulated in librados uses the
cluster map to identify the appropriate OSD. OSD daemons handle the replication,
as described in Smart Daemons Enable Hyperscale. The librados library also
maps objects to placement groups, as described in Calculating PG IDs.

The following examples use the default data pool. However, you may also
use the API to list pools, ensure they exist, or create and delete pools. For
the write operations, the examples illustrate how to use synchronous mode. For
the read operations, the examples illustrate how to use asynchronous mode.

Important

Use caution when deleting pools with this API. If you delete
a pool, the pool and ALL DATA in the pool will be lost.

Python Example
print("\n\nI/O Context and Object Operations")
print("=================================")

print("\nCreating a context for the 'data' pool")
if not cluster.pool_exists('data'):
        raise RuntimeError('No data pool exists')
ioctx = cluster.open_ioctx('data')

print("\nWriting object 'hw' with contents 'Hello World!' to pool 'data'.")
ioctx.write("hw", b"Hello World!")
print("Writing XATTR 'lang' with value 'en_US' to object 'hw'")
ioctx.set_xattr("hw", "lang", b"en_US")


print("\nWriting object 'bm' with contents 'Bonjour tout le monde!' to pool
'data'.")
ioctx.write("bm", b"Bonjour tout le monde!")
print("Writing XATTR 'lang' with value 'fr_FR' to object 'bm'")
ioctx.set_xattr("bm", "lang", b"fr_FR")

print("\nContents of object 'hw'\n------------------------")
print(ioctx.read("hw"))

print("\n\nGetting XATTR 'lang' from object 'hw'")
print(ioctx.get_xattr("hw", "lang"))

print("\nContents of object 'bm'\n------------------------")
print(ioctx.read("bm"))

print("\n\nGetting XATTR 'lang' from object 'bm'")
print(ioctx.get_xattr("bm", "lang"))


print("\nRemoving object 'hw'")
ioctx.remove_object("hw")

print("Removing object 'bm'")
ioctx.remove_object("bm")

Step 4: Closing Sessions

Once your app finishes with the I/O Context and cluster handle, the app should
close the connection and shutdown the handle. For asynchronous I/O, the app
should also ensure that pending asynchronous operations have completed.

Python Example
print("\nClosing the connection.")
ioctx.close()

print("Shutting down the handle.")
cluster.shutdown()

RDB 接口开发

Librbd (Python)

The rbd python module provides file-like access to RBD images.

Example: Creating and writing to an image

To use rbd, you must first connect to RADOS and open an IO
context:

cluster = rados.Rados(conffile='my_ceph.conf')
cluster.connect()
ioctx = cluster.open_ioctx('mypool')

Then you instantiate an :class:rbd.RBD object, which you use to create the
image:

rbd_inst = rbd.RBD()
size = 4 * 1024**3  # 4 GiB
rbd_inst.create(ioctx, 'myimage', size)

To perform I/O on the image, you instantiate an :class:rbd.Image object:

image = rbd.Image(ioctx, 'myimage')
data = b'foo' * 200
image.write(data, 0)

This writes ‘foo’ to the first 600 bytes of the image. Note that data
cannot be :type:unicode - Librbd does not know how to deal with
characters wider than a :c:type:char.

In the end, you will want to close the image, the IO context and the connection to RADOS:

image.close()
ioctx.close()
cluster.shutdown()

To be safe, each of these calls would need to be in a separate :finally
block:

cluster = rados.Rados(conffile='my_ceph_conf')
try:
    cluster.connect()
    ioctx = cluster.open_ioctx('my_pool')
    try:
        rbd_inst = rbd.RBD()
        size = 4 * 1024**3  # 4 GiB
        rbd_inst.create(ioctx, 'myimage', size)
        image = rbd.Image(ioctx, 'myimage')
        try:
            data = b'foo' * 200
            image.write(data, 0)
        finally:
            image.close()
    finally:
        ioctx.close()
finally:
    cluster.shutdown()

This can be cumbersome, so the Rados, Ioctx, and
Image classes can be used as context managers that close/shutdown
automatically (see PEP 343). Using them as context managers, the
above example becomes:

with rados.Rados(conffile='my_ceph.conf') as cluster:
    with cluster.open_ioctx('mypool') as ioctx:
        rbd_inst = rbd.RBD()
        size = 4 * 1024**3  # 4 GiB
        rbd_inst.create(ioctx, 'myimage', size)
        with rbd.Image(ioctx, 'myimage') as image:
            data = b'foo' * 200
            image.write(data, 0)

代码演示

[root@node0 ~]# cd /data/ceph-deploy/
[root@node0 ceph-deploy]# ls
ceph.bootstrap-mds.keyring  ceph.client.admin.keyring  ceph.mon.keyring  rdb
ceph.bootstrap-mgr.keyring  ceph.conf                  crushmap          s3client.py
ceph.bootstrap-osd.keyring  ceph.conf.bak              get-pip.py        swift_source.sh
ceph.bootstrap-rgw.keyring  ceph-deploy-ceph.log       k8s
[root@node0 ceph-deploy]# sudo yum install python-rados
  • 查看代码
[root@node0 ceph-deploy]# cat rbd_ptyhon.py

import rados
import rbd

cluster = rados.Rados(conffile='ceph.conf')
try:
    cluster.connect()
    ioctx = cluster.open_ioctx('ceph-demo')
    try:
        rbd_inst = rbd.RBD()
        size = 4 * 1024**3  # 4 GiB
        rbd_inst.create(ioctx, 'rbd-demo-sdk', size)
        image = rbd.Image(ioctx, 'rbd-demo-sdk')
        try:
            data = b'foo' * 200
            image.write(data, 0)
        finally:
            image.close()
    finally:
        ioctx.close()
finally:
    cluster.shutdown()
  • 查看当前 ceph-demo pool 数据
[root@node0 ceph-deploy]# ceph osd lspools
1 ceph-demo
2 .rgw.root
3 default.rgw.control
4 default.rgw.meta
5 default.rgw.log
6 default.rgw.buckets.index
7 default.rgw.buckets.data
8 cephfs_metadata
9 cephfs_data
11 kubernetes

[root@node0 ceph-deploy]# rbd -p ceph-demo ls
ceph-trash.img
crush-demo.img
mon-test
osd-test.img
rbd-test-new.img
rbd-test-new2.img
rbd-test.img
rdb-demo.img
vm1-clone.img
vm2-clone.img
vm3-clone.img
  • 执行代码,查看新数据
[root@node0 ceph-deploy]# python rbd_python.py

[root@node0 ceph-deploy]# rbd -p ceph-demo ls
ceph-trash.img
crush-demo.img
mon-test
osd-test.img
rbd-demo-sdk        # 新增 rbd 块
rbd-test-new.img
rbd-test-new2.img
rbd-test.img
rdb-demo.img
vm1-clone.img
vm2-clone.img
vm3-clone.img

兼容 S3 对象存储接口

Features Support

The following table describes the support status for current Amazon S3 functional features:

Feature Status Remarks
List Buckets Supported
Delete Bucket Supported
Create Bucket Supported Different set of canned ACLs
Bucket Lifecycle Supported
Policy (Buckets, Objects) Supported ACLs & bucket policies are supported
Bucket Website Supported
Bucket ACLs (Get, Put) Supported Different set of canned ACLs
Bucket Location Supported
Bucket Notification Supported See S3 Notification Compatibility
Bucket Object Versions Supported
Get Bucket Info (HEAD) Supported
Bucket Request Payment Supported
Put Object Supported
Delete Object Supported
Get Object Supported
Object ACLs (Get, Put) Supported
Get Object Info (HEAD) Supported
POST Object Supported
Copy Object Supported
Multipart Uploads Supported
Object Tagging Supported See Object Related Operations for Policy verbs
Storage Class Supported See Storage Classes

Python S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

import boto
import boto.s3.connection
access_key = 'put your access key here!'
secret_key = 'put your secret key here!'

conn = boto.connect_s3(
        aws_access_key_id = access_key,
        aws_secret_access_key = secret_key,
        host = 'objects.dreamhost.com',
        #is_secure=False, # uncomment if you are not using ssl
        calling_format = boto.s3.connection.OrdinaryCallingFormat(),
        )

Listing Owned Buckets

This gets a list of Buckets that you own.
This also prints out the bucket name and creation date of each bucket.

for bucket in conn.get_all_buckets():
        print "{name}\t{created}".format(
                name = bucket.name,
                created = bucket.creation_date,
        )

The output will look something like this:

mahbuckat1   2011-04-21T18:05:39.000Z
mahbuckat2   2011-04-21T18:05:48.000Z
mahbuckat3   2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

bucket = conn.create_bucket('my-new-bucket')

Listing a Bucket’s Content

This gets a list of objects in the bucket.
This also prints out each object’s name, the file size, and last
modified date.

for key in bucket.list():
        print "{name}\t{size}\t{modified}".format(
                name = key.name,
                size = key.size,
                modified = key.last_modified,
                )

The output will look something like this:

myphoto1.jpg 251262  2011-08-08T21:35:48.000Z
myphoto2.jpg 262518  2011-08-08T21:38:01.000Z

Deleting a Bucket

Note: The Bucket must be empty! Otherwise it won’t work!

conn.delete_bucket(bucket.name)

Forced Delete for Non-empty Buckets

Attention

not available in python

Creating an Object

This creates a file hello.txt with the string "Hello World!"

key = bucket.new_key('hello.txt')
key.set_contents_from_string('Hello World!')

Change an Object’s ACL

This makes the object hello.txt to be publicly readable, and
secret_plans.txt to be private.

hello_key = bucket.get_key('hello.txt')
hello_key.set_canned_acl('public-read')
plans_key = bucket.get_key('secret_plans.txt')
plans_key.set_canned_acl('private')

Download an Object (to a file)

This downloads the object perl_poetry.pdf and saves it in
/home/larry/documents/

key = bucket.get_key('perl_poetry.pdf')
key.get_contents_to_filename('/home/larry/documents/perl_poetry.pdf')

Delete an Object

This deletes the object goodbye.txt

bucket.delete_key('goodbye.txt')

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
This then generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

hello_key = bucket.get_key('hello.txt')
hello_url = hello_key.generate_url(0, query_auth=False, force_http=True)
print hello_url

plans_key = bucket.get_key('secret_plans.txt')
plans_url = plans_key.generate_url(3600, query_auth=True, force_http=True)
print plans_url

The output of this will look something like:

http://objects.dreamhost.com/my-bucket-name/hello.txt
http://objects.dreamhost.com/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

兼容 Swift 对象存储接口

Features Support

The following table describes the support status for current Swift functional features:

Feature Status Remarks
Authentication Supported
Get Account Metadata Supported
Swift ACLs Supported Supports a subset of Swift ACLs
List Containers Supported
Delete Container Supported
Create Container Supported
Get Container Metadata Supported
Update Container Metadata Supported
Delete Container Metadata Supported
List Objects Supported
Static Website Supported
Create Object Supported
Create Large Object Supported
Delete Object Supported
Get Object Supported
Copy Object Supported
Get Object Metadata Supported
Update Object Metadata Supported
Expiring Objects Supported
Temporary URLs Partial Support No support for container-level keys
Object Versioning Partial Support No support for X-History-Location
CORS Not Supported

Python Swift Examples

Create a Connection

This creates a connection so that you can interact with the server:

import swiftclient
user = 'account_name:username'
key = 'your_api_key'

conn = swiftclient.Connection(
        user=user,
        key=key,
        authurl='https://objects.dreamhost.com/auth',
)

Create a Container

This creates a new container called my-new-container:

container_name = 'my-new-container'
conn.put_container(container_name)

Create an Object

This creates a file hello.txt from the file named my_hello.txt:

with open('hello.txt', 'r') as hello_file:
        conn.put_object(container_name, 'hello.txt',
                                        contents= hello_file.read(),
                                        content_type='text/plain')

List Owned Containers

This gets a list of containers that you own, and prints out the container name:

for container in conn.get_account()[1]:
        print container['name']

The output will look something like this:

mahbuckat1
mahbuckat2
mahbuckat3

List a Container’s Content

This gets a list of objects in the container, and prints out each
object’s name, the file size, and last modified date:

for data in conn.get_container(container_name)[1]:
        print '{0}\t{1}\t{2}'.format(data['name'], data['bytes'], data['last_modified'])

The output will look something like this:

myphoto1.jpg 251262  2011-08-08T21:35:48.000Z
myphoto2.jpg 262518  2011-08-08T21:38:01.000Z

Retrieve an Object

This downloads the object hello.txt and saves it in
./my_hello.txt:

obj_tuple = conn.get_object(container_name, 'hello.txt')
with open('my_hello.txt', 'w') as my_hello:
        my_hello.write(obj_tuple[1])

Delete an Object

This deletes the object hello.txt:

conn.delete_object(container_name, 'hello.txt')

Delete a Container

Note

The container must be empty! Otherwise the request won’t work!

conn.delete_container(container_name)

标签:14,ioctx,Supported,ceph,cluster,开发,key,rbd,SDK
From: https://www.cnblogs.com/evescn/p/16907014.html

相关文章

  • 【错误记录】Visual Studio 2019 中运行 Unity C# 脚本时报错 ( 根据解决方案, 可能需
    文章目录​​一、报错信息​​​​二、解决方案​​​​三、VisualStudio2019中运行UnityC#脚本需要的组件​​​​1、.NET桌面开发​​​​2、使用Unity的游戏开......
  • 系统设计开发中的运维备用接口
    公司在项目开发中,生产环境的数据库是不能直接进行新增、修改、删除操作,只有查询的权限。包括我们的负责人在内也是同样的权限。这就导致一个问题,如果出现问题,是不能直......
  • 027.1Mybatis注解开发方式
    1.常用注解  2.使用流程2.1  com.imooc.mybatis.dao包下创建接口packagecom.imooc.mybatis.dao;importcom.imooc.mybatis.dto.GoodsDTO;importcom.imooc.......
  • 探探PostgreSQL开发规约
    探探PostgreSQL开发规约0x00背景没有规矩,不成方圆。PostgreSQL的功能非常强大,但是要把PostgreSQL用好,需要后端、运维、DBA的协力配合。 本文针对PostgreSQL数据库......
  • DM8 开发
    DM支持开发语言的种类DM开发语言接口配置​JDBC连接DM数据库DM8JDBC编程注意事项//定义DMJDBC驱动串StringjdbcString="dm.jdbc.driver.DmDriver";//定......
  • 1.1 搭建开发环境
    1.1搭建开发环境项目架构:**1**为项目添加maven依赖<?xmlversion="1.0"encoding="UTF-8"?><projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http......
  • 用友NC产品接口开发,通过轻易云数据集成平台快速调用
    通过用友NC产品的UAPV63平台、插件相关处理、相关业务逻辑处理课程目标与要求课程内容课程目标与要求业务逻辑处理外部系统信息设置节点新建外部系统默认匹配规则:仅按对照......
  • 用友NC产品接口开发,通过轻易云数据集成平台快速调用
    通过用友NC产品的UAPV63平台、插件相关处理、相关业务逻辑处理课程目标与要求课程内容课程目标与要求业务逻辑处理外部系统信息设置节点新建外部系统默认匹配规则:仅按对......
  • Apple开发_应用沙盒
    1、Sandbox沙箱介绍iOS为每个应用提供了独立的文件空间,一个应用只能直接访问为本应用分配的文件目录,不可以访问其他目录,每个应用自己独立的访问空间被称为该应用的沙盒......
  • 第2章搭建CRM项目开发环境-数据库的设计表设计原则,设计结构,实例
    第2章搭建CRM项目开发环境-数据库的设计表设计原则,设计结构,实例2.1CRM项目数据库设计2.1.1数据库设计原则我们可以结合项目原型来考虑数据库设计,市场活动,用户,这些都......