首页 > 其他分享 >Oozie的使用

Oozie的使用

时间:2022-11-11 16:33:16浏览次数:43  
标签:oozie apps Oozie job user 使用 output


1、案例一:Oozie调度shell脚本

目标:使用Oozie调度Shell脚本

分步实现:

1) 解压官方案例模板

$ tar -zxf oozie-examples.tar.gz

 

2) 创建工作目录

$ mkdir oozie-apps/

 

3) 拷贝任务模板到oozie-apps/目录

$ cp -r examples/apps/shell/ oozie-apps/

 

4) 随意编写一个脚本p1.sh

$ vi oozie-apps/shell/p1.sh
内容如下:
#!/bin/bash
/sbin/ifconfig > /tmp/p1.log

尖叫提示:使用vi编辑器编辑脚本

5) 修改job.properties和workflow.xml文件

job.properties

#HDFS地址
nameNode=hdfs://linux01:8020
#ResourceManager地址
jobTracker=linux02:8032
#队列名称
queueName=default
examplesRoot=oozie-apps
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell
EXEC=p1.sh

workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.4" name="shell-wf">
<start to="shell-node"/>
<action name="shell-node">
<shell xmlns="uri:oozie:shell-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<exec>${EXEC}</exec>
<!-- <argument>my_output=Hello Oozie</argument> -->
<file>/user/admin/oozie-apps/shell/${EXEC}#${EXEC}</file>

<capture-output/>
</shell>
<ok to="end"/>
<error to="fail"/>
</action>
<decision name="check-output">
<switch>
<case to="end">
${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'}
</case>
<default to="fail-output"/>
</switch>
</decision>
<kill name="fail">
<message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<kill name="fail-output">
<message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
</kill>
<end name="end"/>
</workflow-app>

 

6) 上传任务配置

$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/ /user/admin

 

7) 执行任务

$ bin/oozie job -oozie http://linux01:11000/oozie -config oozie-apps/shell/job.properties -run

 

8) 杀死某个任务

$ bin/oozie job -oozie http://linux01:11000/oozie -kill 0000004-170425105153692-oozie-z-W

2、案例二:Oozie逻辑调度执行多个Job

目标:使用Oozie执行多个Job调度

分步执行:

1) 解压官方案例模板

$ tar -zxf oozie-examples.tar.gz

 

2) 编写脚本

$ vi oozie-apps/shell/p2.sh
内容如下:
#!/bin/bash
/bin/date > /tmp/p2.log

 

3) 修改job.properties和workflow.xml文件

job.properties

nameNode=hdfs://linux01:8020
jobTracker=linux02:8032
queueName=default
examplesRoot=oozie-apps

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell
EXEC1=p1.sh
EXEC2=p2.sh

workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.4" name="shell-wf">
<start to="p1-shell-node"/>
<action name="p1-shell-node">
<shell xmlns="uri:oozie:shell-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<exec>${EXEC1}</exec>
<file>/user/admin/oozie-apps/shell/${EXEC1}#${EXEC1}</file>
<!-- <argument>my_output=Hello Oozie</argument>-->
<capture-output/>
</shell>
<ok to="p2-shell-node"/>
<error to="fail"/>
</action>

<action name="p2-shell-node">
<shell xmlns="uri:oozie:shell-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<exec>${EXEC2}</exec>
<file>/user/admin/oozie-apps/shell/${EXEC2}#${EXEC2}</file>
<!-- <argument>my_output=Hello Oozie</argument>-->
<capture-output/>
</shell>
<ok to="end"/>
<error to="fail"/>
</action>
<decision name="check-output">
<switch>
<case to="end">
${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'}
</case>
<default to="fail-output"/>
</switch>
</decision>
<kill name="fail">
<message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<kill name="fail-output">
<message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
</kill>
<end name="end"/>
</workflow-app>

 

4) 上传任务配置

$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -rmr /user/admin/oozie-apps/ 
$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/ /user/admin

 

5) 执行任务

$ bin/oozie job -oozie http://linux01:11000/oozie -config oozie-apps/shell/job.properties -run

3、案例三:Oozie调度MapReduce任务

目标:使用Oozie调度MapReduce任务

分步执行:

1) 找到一个可以运行的mapreduce任务的jar包(可以用官方的,也可以是自己写的)

2) 拷贝官方模板到oozie-apps

$ cp -r examples/apps/map-reduce/ oozie-apps/

3) 测试一下wordcount在yarn中的运行

$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/yarn jar ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar wordcount /input/ /output/

4) 配置map-reduce任务的job.properties以及workflow.xml

job.properties

nameNode=hdfs://linux01:8020
jobTracker=linux02:8032
queueName=default
examplesRoot=oozie-apps
#hdfs://linux01:8020/user/admin/oozie-apps/map-reduce/workflow.xml
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/map-reduce/workflow.xml
outputDir=map-reduce

workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.2" name="map-reduce-wf">
<start to="mr-node"/>
<action name="mr-node">
<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/output/"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
<!-- 配置调度MR任务时,使用新的API -->
<property>
<name>mapred.mapper.new-api</name>
<value>true</value>
</property>

<property>
<name>mapred.reducer.new-api</name>
<value>true</value>
</property>

<!-- 指定Job Key输出类型 -->
<property>
<name>mapreduce.job.output.key.class</name>
<value>org.apache.hadoop.io.Text</value>
</property>

<!-- 指定Job Value输出类型 -->
<property>
<name>mapreduce.job.output.value.class</name>
<value>org.apache.hadoop.io.IntWritable</value>
</property>

<!-- 指定输入路径 -->
<property>
<name>mapred.input.dir</name>
<value>/input/</value>
</property>

<!-- 指定输出路径 -->
<property>
<name>mapred.output.dir</name>
<value>/output/</value>
</property>

<!-- 指定Map类 -->
<property>
<name>mapreduce.job.map.class</name>
<value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
</property>

<!-- 指定Reduce类 -->
<property>
<name>mapreduce.job.reduce.class</name>
<value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
</property>

<property>
<name>mapred.map.tasks</name>
<value>1</value>
</property>
</configuration>
</map-reduce>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

5) 拷贝待执行的jar包到map-reduce的lib目录下

$ cp -a ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar oozie-apps/map-reduce/lib

 

6) 上传配置好的app文件夹到HDFS

$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/map-reduce/ /user/admin/oozie-apps

 

7) 执行任务

$ bin/oozie job -oozie http://linux01:11000/oozie -config oozie-apps/map-reduce/job.properties -run

4、案例四:Oozie定时任务/循环任务

目标:Coordinator周期性调度任务

分步实现:

1) 配置Linux时区以及时间服务器

检查系统当前时区:
# date -R

 

注意这里,如果显示的时区不是+0800,你可以删除localtime文件夹后,再关联一个正确时区的链接过去,命令如下:

# rm -rf /etc/localtime
# ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

同步时间:

# ntpdate pool.ntp.org

修改NTP配置文件:

# vi /etc/ntp.conf
去掉下面这行前面的# ,并把网段修改成自己的网段:
restrict 192.168.122.0 mask 255.255.255.0 nomodify notrap
注释掉以下几行:
#server 0.centos.pool.ntp.org
#server 1.centos.pool.ntp.org
#server 2.centos.pool.ntp.org
把下面两行前面的#号去掉,如果没有这两行内容,需要手动添加
server 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10

重启NTP服务:

# systemctl start ntpd.service,
注意,如果是centOS7以下的版本,使用命令:service ntpd start
# systemctl enable ntpd.service,
注意,如果是centOS7以下的版本,使用命令:chkconfig ntpd on

集群其他节点去同步这台时间服务器时间:

首先需要关闭这两台计算机的ntp服务
# systemctl stop ntpd.service,
centOS7以下,则:service ntpd stop
# systemctl disable ntpd.service,
centOS7以下,则:chkconfig ntpd off
# systemctl status ntpd,查看ntp服务状态
# pgrep ntpd,查看ntp服务进程id
同步第一台服务器linux01的时间:
# ntpdate linux01

使用root用户制定计划任务,周期性同步时间:

# crontab -e

*/10 * * * * /usr/sbin/ntpdate linux01

重启定时任务:

# systemctl restart crond.service,

centOS7以下使用:service crond restart,

其他台机器的配置同理。

2) 配置oozie-site.xml文件

属性:oozie.processing.timezone
属性值:GMT+0800
解释:修改时区为东八区区时

尖叫提示:该属性去oozie-default.xml中找到即可

3) 修改js框架中的关于时间设置的代码

$ vi ~/modules/cdh/oozie-4.0.0-cdh5.3.6/oozie-server/webapps/oozie/oozie-console.js
修改如下:
function getTimeZone() {
Ext.state.Manager.setProvider(new Ext.state.CookieProvider());
return Ext.state.Manager.get("TimezoneId","GMT+0800");
}

 

4) 重启oozie服务,并重启浏览器(一定要注意清除缓存)

$ bin/oozied.sh stop
$ bin/oozied.sh start

 

5) 拷贝官方模板配置定时任务

$ cp -r examples/apps/cron/ oozie-apps/

 

6) 修改模板job.properties和coordinator.xml以及workflow.xml

job.properties

nameNode=hdfs://linux01:8020
jobTracker=linux02:8032
queueName=default
examplesRoot=oozie-apps

oozie.coord.application.path=${nameNode}/user/${user.name}/${examplesRoot}/cron
#start:必须设置为未来时间,否则任务失败
start=2017-07-29T17:00+0800
end=2017-07-30T17:00+0800
workflowAppUri=${nameNode}/user/${user.name}/${examplesRoot}/cron

EXEC1=p1.sh
EXEC2=p2.sh

 

coordinator.xml

<coordinator-app name="cron-coord" frequency="${coord:minutes(5)}" start="${start}" end="${end}" timezone="GMT+0800" xmlns="uri:oozie:coordinator:0.2">
<action>
<workflow>
<app-path>${workflowAppUri}</app-path>
<configuration>
<property>
<name>jobTracker</name>
<value>${jobTracker}</value>
</property>
<property>
<name>nameNode</name>
<value>${nameNode}</value>
</property>
<property>
<name>queueName</name>
<value>${queueName}</value>
</property>
</configuration>
</workflow>
</action>
</coordinator-app>

 

workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.5" name="one-op-wf">
<start to="p3-shell-node"/>
<action name="p3-shell-node">
<shell xmlns="uri:oozie:shell-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<exec>${EXEC3}</exec>
<file>/user/admin/oozie-apps/cron/${EXEC3}#${EXEC3}</file>
<!-- <argument>my_output=Hello Oozie</argument>-->
<capture-output/>
</shell>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<kill name="fail-output">
<message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
</kill>
<end name="end"/>
</workflow-app>

 

7) 上传配置

$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/cron/ /user/admin/oozie-apps

 

8) 启动任务

$ bin/oozie job -oozie http://linux01:11000/oozie -config oozie-apps/cron/job.properties -run

尖叫提示:oozie允许的最小执行任务的频率是5分钟

标签:oozie,apps,Oozie,job,user,使用,output
From: https://blog.51cto.com/u_12654321/5845148

相关文章