Problem Description
G with n vertices and m edges. Every time, you can select several edges and delete them. The edges selected must meet the following condition: let G′ be graph induced from these edges, then every connected component of G′
Input
T indicating the number of test cases. For each test case:
The first line contains two integers
n and
m
(1≤n≤2000,0≤m≤2000) -- the number of vertices and the number of edges.
For the next
m lines, each line contains two integers
ui and
vi, which means there is an undirected edge between
ui and
vi
(1≤ui,vi≤n,ui≠vi).
The sum of values of
n in all test cases doesn't exceed
2⋅104. The sum of values of
m in all test cases doesn't exceed
2⋅104.
Output
For each test case, output the minimum number of deletion needed.
Sample Input
3 4 2 1 2 1 3 4 5 1 2 1 3 1 4 2 3 2 4 4 4 1 2 2 3 3 4 4 1
Sample Output
1 2 1
表示想不到,参考的是题解中的解法2,把原图中的边新建成一个点与原图中的两个点相连建成二分图,然后二分答案验证时否完全匹配
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<functional>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=2e3+10;
const int mod=1e9+7;
int T,n,m,x[maxn],y[maxn];
struct MaxFlow
{
const static int maxe = 2e6 + 10; //边数
const static int maxp = 1e5 + 10; //点数
const static int INF = 0x7FFFFFFF;
struct Edges
{
int x, f;
Edges(){}
Edges(int x, int f) :x(x), f(f){}
}edge[maxe];
int first[maxp], next[maxe], dis[maxp], tot, work[maxp], n;
void clear(int x){ n = x; tot = 0; for (int i = 0; i <= n; i++) first[i] = -1; }
void AddEdge(int s, int t, int f)
{
edge[tot] = Edges(t, 0); next[tot] = first[s]; first[s] = tot++;
edge[tot] = Edges(s, f); next[tot] = first[t]; first[t] = tot++;
}
bool bfs(int s, int t)
{
for (int i = 0; i <= n; i++) dis[i] = -1;
queue<int> p; p.push(s); dis[s] = 0;
while (!p.empty())
{
int q = p.front(); p.pop();
for (int i = first[q]; i != -1; i = next[i])
{
if (edge[i ^ 1].f&&dis[edge[i].x] == -1)
{
p.push(edge[i].x);
dis[edge[i].x] = dis[q] + 1;
if (dis[t] != -1) return true;
}
}
}
return false;
}
int dfs(int s, int t, int low)
{
if (s == t) return low;
for (int &i = work[s], x; i >= 0; i = next[i])
{
if (dis[s] + 1 == dis[edge[i].x] && edge[i ^ 1].f && (x = dfs(edge[i].x, t, min(low, edge[i ^ 1].f))))
{
edge[i].f += x; edge[i ^ 1].f -= x; return x;
}
}
return 0;
}
int dinic(int s, int t)
{
int maxflow = 0, inc = 0;
while (bfs(s, t))
{
for (int i = 0; i <= n; i++) work[i] = first[i];
while (inc = dfs(s, t, INF)) maxflow += inc;
}
return maxflow;
}
}solve;
bool check(int flow)
{
solve.clear(n+m+1);
for (int i=1;i<=m;i++)
{
solve.AddEdge(i,0,1);
solve.AddEdge(m+x[i],i,1);
solve.AddEdge(m+y[i],i,1);
}
for (int i=m+1;i<=m+n;i++) solve.AddEdge(n+m+1,i,flow);
return solve.dinic(n+m+1,0)==m;
}
int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++) scanf("%d%d",&x[i],&y[i]);
if (!m) {printf("0\n"); continue;}
int q=1,h=m;
while (q<=h)
{
int mid=q+h>>1;
if (check(mid)) h=mid-1; else q=mid+1;
}
printf("%d\n",q);
}
return 0;
}