首页 > 系统相关 >43 C 程序动态内存分配:内存区域划分、void 指针、内存分配相关函数(malloc、calloc、realloc、_msize、free)、内存泄漏

43 C 程序动态内存分配:内存区域划分、void 指针、内存分配相关函数(malloc、calloc、realloc、_msize、free)、内存泄漏

时间:2024-10-09 23:18:09浏览次数:3  
标签:malloc 函数 int void 内存 NULL 分配 指针

目录

1 C 程序内存区域划分

1.1 代码区 (Code Section)

1.2 全局/静态区 (Global/Static Section)

1.3 栈区 (Stack Section)

1.4 堆区 (Heap Section)

1.5 动态内存分配

2 void 指针(无类型指针)

2.1 void 指针介绍

2.2 void 指针的作用

2.3 void 指针的特点

2.4 void 指针类型转换注意事项

2.4.1 其他类型指针赋给 void 指针

2.4.2 void 指针赋给其他类型指针

3 malloc() 函数

3.1 函数原型

3.2 使用步骤

3.3 动态分配整型数据的空间

3.4 动态分配数组空间

4 calloc() 函数

4.1 函数原型

4.2 使用步骤

4.3 案例演示

5 realloc() 与 _msize 函数

5.1 函数原型

5.2 使用步骤

5.3 案例演示

6 内存泄漏与 free() 函数

6.1 内存泄漏

6.2 free() 函数

6.2.1 函数原型

6.2.2 使用步骤

6.2.3 注意事项

6.2.4 案例演示

7 内存分配的基本原则

7.1 避免分配大量的小内存块

7.2 仅在需要时分配内存

7.3 总是确保释放已分配的内存

8 综合案例


1 C 程序内存区域划分

        在 C 语言中,内存可以分为几个不同的区域,每个区域都有其特定的作用。

1.1 代码区 (Code Section)

        也称为文本区,是只读的,用于存放程序的机器指令。

        这个区域的内容是在程序编译时确定的,并且在程序运行期间不会改变。

1.2 全局/静态区 (Global/Static Section)

        这个区域用于存储全局变量和静态变量。

        全局变量是在所有函数外部定义的变量,它们在整个程序的生命周期内都存在。

        静态变量可以在全局或局部范围内定义,但无论在哪里定义,它们都会在这个区域分配空间,并且在整个程序执行过程中保持存在。

        初始化的全局变量和静态变量会被分配到已初始化的数据段(如 .data 段),而未初始化的全局变量和静态变量则会被分配到未初始化的数据段(如 .bss 段)。

1.3 栈区 (Stack Section)

        栈区用于存储函数的局部变量和函数调用信息(如返回地址)。

        当一个函数被调用时,一个新的栈帧(stack frame)会被创建并压入栈顶,其中包含了该函数所有局部变量。

        函数执行完毕后,这个栈帧会被弹出栈,释放了该函数使用的内存。

        栈区的操作是自动化的,由编译器管理,不需要程序员手动干预。

1.4 堆区 (Heap Section)

        堆区是一个动态分配内存的区域,通常通过 malloc()、calloc()、realloc() 和 free() 等函数进行管理。

        动态内存分配允许程序在运行时请求任意大小的内存块,这对于处理未知大小的数据集非常有用。

        一旦不再需要这块内存,应该调用 free() 函数释放它,以避免内存泄漏

1.5 动态内存分配

        动态内存分配是指在程序运行时根据需要从堆区请求内存的行为

        由于动态分配的内存没有与任何变量名关联,因此必须使用指针来访问这些内存

        使用动态内存分配时,程序员需要负责确保正确地分配和释放内存,以防止内存泄漏或其他错误。


2 void 指针(无类型指针)

2.1 void 指针介绍

        在 C 语言中,void 指针是一种特殊的指针类型,它可以指向任何类型的数据。C99 标准允许定义一个类型为 void 的指针变量,这种指针在编译时没有具体的类型信息,因此可以灵活地用于各种场景。

2.2 void 指针的作用

        灵活性:指针变量必须有类型,以便编译器知道如何解释内存块中的二进制数据。然而,在某些情况下,当向系统请求内存时,可能还不确定会有什么类型的数据写入内存。此时,可先使用void指针获取内存块(仅含地址信息,无类型信息),待后续使用时再明确数据类型

        通用性:void 指针在函数参数传递和通用数据处理中非常有用,尤其是在实现泛型编程时,可以避免重复编写针对不同数据类型的代码。

2.3 void 指针的特点

        类型转换:void 指针与其他所有类型的指针之间可以互相转换。任一类型的指针都可以转换为 void 指针,而 void 指针也可以转换为任一类型的指针

        解引用限制:由于 void 指针没有具体的类型信息,因此不能直接使用 * 运算符(解引用)来访问它所指向的值。如果需要访问 void 指针指向的数据,必须先将其转换为适当的类型指针。

#include <stdio.h>

int main()
{
    int num = 42;
    double pi = 3.14159;

    // 将 int 指针隐式转换为 void 指针
    void *viPtr = &num;

    // 将 double 指针隐式转换为 void 指针
    void *vdPtr = &pi;

    // 将 void 指针转换为 int 指针并解引用
    // int *intPtr = viPtr;        // 隐式类型转换
    int *intPtr = (int *)viPtr;      // 显示类型转换
    printf("整数值:%d\n", *intPtr); // 42

    // 将 void 指针转换为 double 指针并解引用
    // double *doublePtr = vdPtr; // 隐式类型转换
    double *doublePtr = (double *)vdPtr; // 显示类型转换
    printf("浮点数:%f\n", *doublePtr);  // 3.141590

    // void 指针不能直接解引用,会导致编译错误
    // 下面的代码会报错
    // printf("%d\n", *viPtr);
    // printf("%f\n", *vdPtr);

    // 如果需要访问 void 指针指向的数据,必须先将其转换为适当的类型指针
    printf("%d\n", *(int *)viPtr);    // 42
    printf("%f\n", *(double *)vdPtr); // 3.141590

    return 0;
}

2.4 void 指针类型转换注意事项

2.4.1 其他类型指针赋给 void 指针

        将其他类型指针赋给 void 指针时,可以使用隐式转换,因为 void 指针不包含指向的数据类型的信息,通常是安全的。

int num = 42;
double pi = 3.14159;

// 将 int 指针隐式转换为 void 指针
void *viPtr = &num;

// 将 double 指针隐式转换为 void 指针
void *vdPtr = &pi;

2.4.2 void 指针赋给其他类型指针

        将 void 指针赋给其他类型指针时,建议使用显式类型转换,这样更加安全。如果使用隐式类型转换,有些编译器会触发警告。

// 将 void 指针显式转换为 int 指针并解引用
int *intPtr = (int *)viPtr;
printf("整数值:%d\n", *intPtr);

// 将 void 指针显式转换为 double 指针并解引用
double *doublePtr = (double *)vdPtr;
printf("浮点数:%f\n", *doublePtr);

3 malloc() 函数

3.1 函数原型

        malloc() 函数用于在程序运行时动态分配一块连续的内存空间。这是 C 语言中常用的动态内存分配函数之一,通常与 free() 函数一起使用,以确保内存的正确管理和释放。

#include <stdlib.h>
void *malloc(size_t size);
  • size:要分配的内存块的大小,以字节为单位
  • 如果内存分配成功,返回一个 void 指针,指向新分配内存块的起始地址
  • 如果内存分配失败(例如内存不足),返回一个空指针 NULL

3.2 使用步骤

  • 分配内存:调用 malloc() 函数,传入所需的内存大小。
  • 检查返回值:检查返回的指针是否为 NULL,以确保内存分配成功。
  • 使用内存:将返回的 void 指针转换为适当的类型指针,并使用该指针访问分配的内存。
  • 释放内存:使用 free() 函数释放分配的内存,以避免内存泄漏。

3.3 动态分配整型数据的空间

#include <stdio.h>
#include <stdlib.h>

int main()
{
    // 在栈区直接创建局部变量
    int num = 120;

    int *p = NULL;
    // 动态分配整型数据的空间
    // malloc(sizeof(int)) 请求分配一个 int 类型大小的内存块
    // (int *) 是显式类型转换,将 void 指针转换为 int 指针
    // p 指向新分配内存块的起始地址
    p = (int *)malloc(sizeof(int));

    // 检查内存是否分配成功
    if (p == NULL)
    {
        printf("内存分配失败\n");
        return 1; // 退出程序
    }

    // p = &num; 不要这样操作,这相当于修改了指针 p 的指向,就没有用到上面动态分配的空间

    // 使用解引用赋值并输出
    *p = num;
    printf("p指向的地址(堆区):%p\n", (void *)p);
    printf("局部变量num的地址(栈区):%p\n", (void *)&num);
    printf("p指向的值:%d\n", *p); // 120

    // 释放分配的内存,避免内存泄漏
    // free(p); // 简单处理

    // 推荐处理
    if (p != NULL)
    {
        free(p);
        p = NULL; // 释放后将指针设为 NULL,避免悬挂指针
    }

    return 0;
}

         输出结果如下所示:

3.4 动态分配数组空间

        在 C 语言中,malloc() 函数不仅可用于分配单个变量的内存,还可以用于动态分配数组的内存。以下是一个示例,展示了如何使用 malloc() 函数动态分配整型数组的内存,并对其进行操作。

#include <stdio.h>
#include <stdlib.h>

int main()
{
    int *p = NULL; // 定义整型指针
    int n = 5;     // 定义数组长度
    // int array[n];  错误,表达式必须含有常量值

    // 动态分配内存,将地址赋给指针 p
    // malloc(n * sizeof(int)) 请求分配一个大小为 n * sizeof(int) 的内存块,即 n 个 int 类型的内存
    // (int *) 是显式类型转换,将 void 指针转换为 int 指针
    // p 指向新分配内存块的起始地址
    p = (int *)malloc(n * sizeof(int));

    // 判断是否分配成功
    if (p == NULL)
    {
        printf("内存分配失败\n");
        return 1; // 退出程序
    }

    // 给数组元素赋值
    for (int i = 0; i < n; i++)
    {
        p[i] = i * 10;
    }

    // 输出数组的元素
    for (int i = 0; i < n; i++)
    {
        printf("p[%d] = %d\n", i, p[i]);
    }

    // 释放分配的内存,避免内存泄漏
    // free(p); // 简单处理

    // 推荐处理
    if (p != NULL)
    {
        free(p);
        p = NULL; // 释放后将指针设为 NULL,避免悬挂指针
    }

    return 0;
}

        输出结果如下所示:


4 calloc() 函数

4.1 函数原型

        calloc() 函数用于在程序运行时动态分配内存,并将分配的内存初始化为零。这是 C 语言中常用的动态内存分配函数之一,通常与 free() 函数一起使用,以确保内存的正确管理和释放。

#include <stdlib.h>
void *calloc(size_t numElements, size_t sizeOfElement);
  • numElements:要分配的元素的数量。
  • sizeOfElement:每个元素的大小(以字节为单位)。
  • 如果内存分配成功,返回一个 void 指针,指向新分配内存块的起始地址。
  • 如果内存分配失败(例如内存不足),返回一个空指针 NULL。

4.2 使用步骤

  • 分配内存:调用 calloc() 函数,传入所需的元素数量和每个元素的大小。
  • 检查返回值:检查返回的指针是否为 NULL,以确保内存分配成功。
  • 使用内存:将返回的 void 指针转换为适当的类型指针,并使用该指针访问分配的内存。
  • 释放内存:使用 free() 函数释放分配的内存,以避免内存泄漏。

4.3 案例演示

        以下是一个示例代码,展示了如何使用 calloc() 函数动态分配整型数组的内存,并将其初始化为零:

#include <stdio.h>
#include <stdlib.h>

int main()
{
    int *p = NULL; // 定义整型指针
    int n = 5;     // 定义数组长度

    // 动态分配内存并初始化为零,将地址赋给指针 p
    // calloc(n, sizeof(int)) 请求分配一个大小为 n * sizeof(int) 的内存块,并将每个字节初始化为零
    // (int *) 是显式类型转换,将 void 指针转换为 int 指针
    p = (int *)calloc(n, sizeof(int));

    // 判断是否分配成功
    if (p == NULL)
    {
        printf("内存分配失败\n");
        return 1; // 退出程序
    }

    // 输出数组的元素的值
    for (int i = 0; i < n; i++)
    {
        printf("p[%d] = %d\n", i, p[i]); // 全是 0
    }

    // 给数组元素赋值
    for (int i = 0; i < n; i++)
    {
        p[i] = i * 10;
    }

    // 输出数组的元素
    for (int i = 0; i < n; i++)
    {
        printf("p[%d] = %d\n", i, p[i]); // 0 10 20 30 40
    }

    // 释放分配的内存,避免内存泄漏
    // free(p); // 简单处理

    // 推荐处理
    if (p != NULL)
    {
        free(p);
        p = NULL; // 释放后将指针设为 NULL,避免悬挂指针
    }

    return 0;
}

        输出结果如下所示:


5 realloc() 与 _msize 函数

5.1 函数原型

        realloc() 函数用于重新分配 malloc() 或 calloc() 函数所获得的内存块的大小。这在需要动态调整内存大小时非常有用。

#include <stdlib.h>
void *realloc(void *ptr, size_t size);
  • ptr:要重新分配的内存块的指针。
  • size:新的内存块的大小(以字节为单位)。
  • 返回一个指向重新分配内存块的指针。如果内存重新分配成功,返回的指针可能与原始指针相同,也可能不同。
  • 如果内存分配失败,返回一个空指针 NULL。
  • 如果在原内存块上进行缩减,通常返回的地址与原来的地址相同。

5.2 使用步骤

  • 分配内存:使用 malloc() 或 calloc() 函数分配初始内存。
  • 重新分配内存:调用 realloc() 函数,传入当前指针和新的内存大小。
  • 检查返回值:检查返回的指针是否为 NULL,以确保内存重新分配成功。
  • 使用新的内存:使用返回的新指针访问重新分配的内存。
  • 释放内存:使用 free() 函数释放分配的内存,以避免内存泄漏。

5.3 案例演示

        以下是一个示例代码,展示了如何使用 realloc() 函数动态调整内存大小,并使用 _msize() 函数获取指定内存块的大小:

        _msize() 函数用于获取指定内存块的大小,但请注意,这个函数不是标准 C 库的一部分,而是特定于某些平台(如 Windows)。在其他平台上,可能需要使用其他方法来获取内存块的大小。

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

int main()
{
    // 声明指针
    int *p = NULL;

    // 分配内存
    // 使用 malloc() 函数分配初始内存,大小为 100 * sizeof(int)
    p = (int *)malloc(sizeof(int) * 100);
    if (p == NULL)
    {
        printf("初始内存分配失败\n");
        return 1;
    }
    // 使用 _msize() 函数获取分配的内存大小,并输出指针地址和内存大小
    printf("p=%p, size:%zu 字节\n", p, _msize(p)); // 400

    // 调整内存大小
    p = (int *)realloc(p, sizeof(int) * 2000);
    if (p == NULL)
    {
        printf("内存重新分配失败\n");
        return 1;
    }
    // 使用 _msize() 函数获取分配的内存大小,并输出指针地址和内存大小
    printf("p=%p, size:%zu 字节\n", p, _msize(p)); // 8000

    // 再次调整内存大小
    // 如果在原内存块上进行缩减,通常返回的地址与原来的地址相同
    p = (int *)realloc(p, sizeof(int) * 200);
    if (p == NULL)
    {
        printf("内存重新分配失败\n");
        return 1;
    }
    // 使用 _msize() 函数获取分配的内存大小,并输出指针地址和内存大小
    printf("p=%p, size:%zu 字节\n", p, _msize(p)); // 800

    // 释放分配的内存,避免内存泄漏
    // free(p); // 简单处理

    // 推荐处理
    if (p != NULL)
    {
        free(p);
        p = NULL; // 释放后将指针设为 NULL,避免悬挂指针
    }

    return 0;
}

        输出结果如下所示:


6 内存泄漏与 free() 函数

6.1 内存泄漏

        内存泄漏是指在程序运行过程中,动态分配的内存空间没有被正确释放,导致系统中的可用内存逐渐减少,直到耗尽系统可用的内存资源。内存泄漏不仅会影响程序的性能,还可能导致程序崩溃或系统不稳定。

6.2 free() 函数

6.2.1 函数原型

        free() 函数用于释放动态分配的内存,以便将内存返回给操作系统,防止内存泄漏

void free(void *ptr);
  • ptr:指向要释放的内存块的指针。ptr 必须是通过 malloc()、calloc() 或 realloc() 动态分配的内存块地址。
  • free() 函数没有返回值。

6.2.2 使用步骤

  • 分配内存:使用 malloc()、calloc() 或 realloc() 函数动态分配内存。
  • 使用内存:在程序中使用分配的内存。
  • 释放内存:使用 free() 函数释放分配的内存,确保内存返回给操作系统。

6.2.3 注意事项

1. 避免双重释放:

        释放的内存块一旦被 free() 释放,就不应该再次操作已经释放的地址,也不应该再次使用 free() 对该地址释放第二次。这会导致未定义行为,可能会导致程序崩溃。

int *p = (int *)malloc(sizeof(int));
free(p);  // 第一次释放
free(p);  // 错误:第二次释放

2. 避免内存泄漏:

        如果忘记调用 free() 函数,会导致无法访问未回收的内存块,构成内存泄漏。

int *p = (int *)malloc(sizeof(int));
// 忘记释放内存
// free(p);  // 应该在这里释放内存

3. 检查指针是否为 NULL:

        在释放内存之前,最好检查指针是否为 NULL。释放 NULL 指针是安全的,不会导致错误,但这是一个良好的编程习惯。

        释放内存后,最好将指针设为 NULL,以避免悬挂指针(即指向已释放内存的指针)。

int *p = (int *)malloc(sizeof(int));
if (p != NULL) {
    free(p);
    p = NULL;  // 释放后将指针设为 NULL,避免悬挂指针
}

6.2.4 案例演示

        以下是一个示例代码,展示了如何正确使用 malloc() 和 free() 函数,避免内存泄漏和双重释放:

#include <stdio.h>
#include <stdlib.h>

int main() {
    int *p = NULL;  // 定义整型指针

    // 动态分配内存
    p = (int *)malloc(sizeof(int));
    if (p == NULL) {
        printf("内存分配失败\n");
        return 1;
    }

    // 使用分配的内存
    *p = 120;
    printf("p指向的地址:%p\n", (void *)p);
    printf("p指向的值:%d\n", *p);

    // 释放分配的内存
    if (p != NULL) {
        free(p);
        p = NULL;  // 释放后将指针设为 NULL
    }

    return 0;
}

7 内存分配的基本原则

        在 C 语言中,动态内存分配是一项重要的任务,合理的内存管理可以提高程序的性能和稳定性。以下是一些内存分配的基本原则:

7.1 避免分配大量的小内存块

        原因:分配堆上的内存有一些系统开销,包括分配和释放内存时的管理开销。分配许多小的内存块会增加这些开销,从而影响程序的性能。

        建议:尽量合并多个小内存块的分配,使用较大的内存块来减少系统开销。例如,可以预先分配一个较大的缓冲区,然后在需要时从中划分出所需的小内存块。

7.2 仅在需要时分配内存

        原因:动态分配的内存会占用系统的资源,如果分配了不必要的内存,不仅浪费资源,还可能导致内存泄漏。

        建议:在实际需要使用内存时再进行分配,并且在使用完内存后及时释放。避免过早分配内存或分配过多的内存。

7.3 总是确保释放已分配的内存

        原因:未释放的内存会导致内存泄漏,随着时间的推移,内存泄漏会逐渐消耗系统资源,最终可能导致程序崩溃或系统不稳定。

        建议:在编写分配内存的代码时,就要确定好在代码的什么地方释放内存。使用 free() 函数释放不再需要的内存,并确保不会对同一个内存块多次释放。

#include <stdio.h>
#include <stdlib.h>

// 分配和释放内存的辅助函数
void allocate_and_use_memory() {
    int *p = NULL;

    // 仅在需要时分配内存
    p = (int *)malloc(sizeof(int) * 1000);
    if (p == NULL) {
        printf("内存分配失败\n");
        return;
    }

    // 使用分配的内存
    for (int i = 0; i < 1000; i++) {
        p[i] = i * 10;
    }

    // 输出部分元素
    for (int i = 0; i < 10; i++) {
        printf("p[%d] = %d\n", i, p[i]);
    }

    // 及时释放内存
    if (p != NULL)
    {
        free(p);
        p = NULL; // 释放后将指针设为 NULL,避免悬挂指针
    }
}

int main() {
    // 调用内存管理函数
    allocate_and_use_memory();

    return 0;
}

8 综合案例

        动态创建数组,输入 5 个学生的成绩,再定义一个函数检测成绩低于 60 分的,输出不合格的成绩。

#include <stdlib.h>
#include <stdio.h>

// 函数原型声明
void check(int *);

int main()
{
    int *p = NULL;

    // 在堆区开辟一个 5 * 4 的空间,用于存储 5 个整数
    p = (int *)malloc(5 * sizeof(int));

    // 检查内存是否分配成功
    if (p == NULL)
    {
        printf("内存分配失败\n");
        return 1; // 退出程序
    }

    printf("请输入5个成绩(整数):");

    // 从用户输入读取 5 个整数,存储到动态分配的内存中
    for (int i = 0; i < 5; i++)
    {
        // scanf("%d", p + i); // 使用指针算术,将输入的整数存储到 p[i] 中
        // p + i 是指针算术,表示将指针 p 向后移动 i 个元素的位置

        scanf("%d", &p[i]); // 使用数组形式,将输入的整数存储到 p[i] 中
        // &p[i] 是取地址操作,表示 p 指向的数组中第 i 个元素的地址
    }

    // 调用 check 函数,检查不及格的成绩
    check(p);

    // 释放动态分配的内存,避免内存泄漏
    free(p);
    p = NULL; // 避免悬挂指针

    return 0;
}

// 函数定义
void check(int *p)
{
    printf("不及格的成绩有: ");

    // 遍历动态分配的内存中的 5 个整数
    for (int i = 0; i < 5; i++)
    {
        // 如果成绩小于 60,输出该成绩
        if (p[i] < 60)
        {
            printf(" %d ", p[i]);
        }
    }
}

        输出结果如下所示:

标签:malloc,函数,int,void,内存,NULL,分配,指针
From: https://blog.csdn.net/qq_53139964/article/details/142789321

相关文章

  • Rstudio占用内存过大
    在R中,尤其是在使用RStudio时,如果数据集很大,全部加载到内存可能会导致内存不足的问题。为了优化内存使用,可以考虑以下几种加载策略:1.按需加载数据使用data.table或dplyr包的功能,可以按需加载数据,而不是将整个数据集加载到内存中。例如,可以使用fread()函数从CSV文件......
  • 怎么手动在rstudio中释放内存?
    在RStudio中手动释放内存的几种方法如下:1.使用gc()函数R提供了gc()函数,可以用来强制R进行垃圾回收,从而释放未使用的内存。可以在R控制台中输入:gc()2.清除对象如果有不再需要的对象,可以使用rm()函数删除它们,并随后调用gc()函数。例如:#删除特定对象rm(obj......
  • unity简单内存池案例
    unity简单内存池案例组件准备代码部分 1.组件准备在unity中创建一个空白物体命名为cubepawner,并拖到主摄像机之前 然后再创建cubepawner和cubePool脚本挂载到该物体上  再创建一个正方体,同时再创建一个空脚本,命名为cube挂上去,并将该正方体拖入下方文件浏览器中......
  • redis安装致命错误jemalloc/jemalloc.h
    安装报错在安装redis的时候,执行 make&&makeinstall发生以下错误解决方案 其实可以读一下redis里的Readme.md文件,我截图了其中的部分,使用makeMALLOC=libc&makeinstall Redis指令记录 DBSIZECONFIGGETdatabases ......
  • Java对象内存图
    Java的对象内存图一、Java内存分配介绍Java虚拟机(JVM)在执行Java程序时会使用多个内存区域栈:方法运行时所进入的内存,变量也是在这里堆:new出来的东西会在这块内存中开辟空间并产生地址方法区:字节码文件加载时进入的内存(class类、main方法等)本地方法栈寄存器1.堆区(Heap......
  • 【 java 安全】Java对象都是堆上分配?看完Java中对象逃逸分析就知道答案了
    原创龙虾编程随着JIT编译期的发展与逃逸分析技术逐渐成熟,所有的对象都分配到堆上也渐渐变得不是一定的。在编译期间JIT会对代码做很多优化,其中有一部分优化是减少内存堆分配压力,这里有一种重要的技术叫逃逸分析。逃逸分析是一种可以有效减少Java程序中同步负载和内存堆分配压......
  • c语音常见内存问题
    内存划分:一、静态区1、内存越界:数据区内存越界主要指读写某一数据区内存(如全局或静态变量、数组或结构体等)时,超出该内存区域的合法范围读越界和写越界读越界表示读取不属于自己的数据,如读取的字节数多于分配给目标变量的字节数。若所读的内存地址无效,则程序立即崩溃;若所读的内......
  • 【Azure Cloud Service】创建Azure云服务时遇见分配VM资源错误: VM(s) with the follo
    问题描述创建AzureCloudService资源,遇见资源操作完成时的终端预配状态为Failed的信息。创建失败,创建的错误日志截图如下: 详细的错误信息为:{"code":"DeploymentFailed","message":"Atleastoneresourcedeploymentoperationfailed.Pleaselistdeploymentoperati......
  • Python 享元模式:高效利用内存的设计模式
    在Python编程中,随着程序规模的增大和数据量的增加,内存管理变得至关重要。享元模式(FlyweightPattern)作为一种结构型设计模式,为我们提供了一种在某些场景下有效管理内存、提高系统性能的方法。本文将深入探讨Python中的享元模式,包括其概念、关键要点、实现方式、应用场景......
  • Redis:高性能的内存数据库
    Redis,全称是RemoteDictionaryServer,是一个开源的内存数据结构存储系统。它可以用作数据库、缓存和消息中间件,支持多种数据结构,如字符串、哈希、列表、集合和有序集合等。Redis以其高性能、丰富的数据类型和强大的功能,广泛应用于各种互联网应用中。一,Redis的核心特性......