为什么要用C++调Python
我们训练部署CNN模型时,服务器用Pytorch测试的精度比我们部署端精度高0.5%。经过多方排查,发现是由于Pytorch预处理图片使用PIL进行图片读取和尺寸调整,但是部署端采用OpenCV进行图片读取和尺寸调整。两种实现方式实现的Resize操作差异非常大。为了快速完成项目,暂时用C++调用Python的PIL库进行图像预处理,检查实现的精度。
安装Python环境
因为C在编译的时候需要链接到Python函数的一些链接库,并且Linux环境下更改默认Python可能会造成桌面系统损坏,所以我们重新编译了一个Python环境。
1. 安装Python所需的依赖项sudo apt install libbz2-dev
2. 下载Python源代码:https://www.python.org/ftp/python/3.10.14/Python-3.10.14.tgz
3. 新建python_env目录,并将tgz压缩包复制到其中,使用tar -xvf Python-3.10.14.tgz 解压该文件,得到如下目录结构:
python_env|
| Python-3.10.14
| Python-3.10.14.tgz
4.cd Python-3.10.14
5.配置Python安装文件,打开--enable-shared生成可以连接到g++的动态链接库文件,使用—prefix指定安装目录:
./configure --enable-shared --prefix=/home/dell/Work4/workspace/user_work4/python_env
6.make
7.make -j16 install
8.此时所需的Python环境已经安装到/home/dell/Work4/workspace/user_work4/python_env目录下
9.安装成功后会显示需要添加动态链接库的位置:LD_LIBRARY_PATH
10.将之前显示的动态链接库路径添加到环境变量(可以放到~/.bashrc下):
export LD_LIBRARY_PATH=/home/dell/Work4/workspace/user_work4/python_env/Python-3.10.14
安装Pytorch OpenCV
在对应的python环境下安装pytorch:
/home/dell/Work4/workspace/user_work4/python_env/bin/python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
在对应的python环境下安装opencv:
/home/dell/Work4/workspace/user_work4/python_env/bin/python3 -m pip install opencv-python
编写Python脚本
编写Python脚本pil_load_pic_mod.py
from PIL import Image import os import cv2 os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import numpy as np import torchvision.transforms as transforms import pdb def pil_load_pic(img_path): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) trans=transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),normalize]) # PIL Loading PIC # img = Image.open(img_path) # img_rgb = img.convert('RGB') # Opencv Loading PIC img = cv2.imread(img_path) img_rgb = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) img_rgb = Image.fromarray(img_rgb) # Resize img_resized = trans(img_rgb) img_numpy = img_resized.numpy() # pdb.set_trace() # print("Python Successfully load %s"%img_path) #dtype=float32 return img_numpy.reshape(-1).tolist() if __name__=="__main__": print(pil_load_pic("/home/dell/Work3/data_set/ImageNet/ILSVRC2012_img_val/ILSVRC2012_val_00000001.JPEG")) #234 #!/home/dell/Disk03/students/user/python_env/bin/python3 #112 #!/home/dell/Disk03/user/python_env/bin/python3
编写C++程序
#include<stdio.h> #include<Python.h> int main(){ // PIL load and resize pic Init float mean[3]={0.485, 0.456, 0.406}, std[3]={0.229, 0.224, 0.225}; //rgb #define PIC_OUT_SIZE 224 Py_Initialize(); if (!Py_IsInitialized()) { printf("ERROR: Python init fail\n"); exit(1); } PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append('./')"); PyObject *pModule = PyImport_ImportModule("pil_load_pic_mod"); if (pModule == NULL){ printf("ERROR: No Python module loaded!\n"); PyErr_Print(); exit(1); } PyObject *pFunc = PyObject_GetAttrString(pModule, "pil_load_pic"); if (!PyCallable_Check(pFunc)){ printf("ERROR: No Python module loaded!\n"); PyErr_Print(); exit(1); } char picture_file_path[255] = {0}; char *img_resized; img_resized = (char *)malloc(PIC_OUT_SIZE*PIC_OUT_SIZE*3); for (int pic_num = 1; pic_num <=1; pic_num++){ sprintf(picture_file_path, "/home/dell/Work4/workspace/user_work4/c_and_python/ILSVRC2012_val_%08d.JPEG", pic_num); // OpenCV load and resize pic // cv_load_pic(picture_file_path,img_resized); // PIL load and resize pic PyObject *loadImageArgs = Py_BuildValue("(s)", picture_file_path); PyObject *pValue = PyObject_CallObject(pFunc, loadImageArgs); Py_DECREF(loadImageArgs); if (pValue != NULL) { printf("Python Successfully load %s\n",picture_file_path); if (PyList_Check(pValue)) { Py_ssize_t size = PyList_Size(pValue); if(size != (PIC_OUT_SIZE*PIC_OUT_SIZE*3)){ printf("PIL output pic size error!\n"); exit(1); } int row=0, col=0, cc=0, out_idx=0; for (Py_ssize_t i = 0; i < size; i++) { PyObject *item = PyList_GetItem(pValue, i); // if(col<3 && row<3){ // printf("col:%d row:%d cc:%d %f\n", col, row, cc, PyFloat_AsDouble(item)); // } img_resized[out_idx++] = (PyFloat_AsDouble(item) * std[cc] + mean[cc]) * 255; if(cc==3-1 && row==PIC_OUT_SIZE-1 && col==PIC_OUT_SIZE-1){ cc = 0; } else if(row==PIC_OUT_SIZE-1 && col==PIC_OUT_SIZE-1){ cc++; } if(row==PIC_OUT_SIZE-1 && col==PIC_OUT_SIZE-1){ row = 0; } else if(col==PIC_OUT_SIZE-1){ row++; } if(col==PIC_OUT_SIZE-1){ col = 0; } else{ col++; } } } Py_DECREF(pValue); } else { PyErr_Print(); } } return 0; }
编写Makefile
输入指令查看所需编译参数:
/home/dell/Work4/workspace/user_work4/python_env/bin/python3-config --cflags --embed
输入指令查看所需链接参数:
# /home/dell/Work4/workspace/user_work4/python_env/bin/python3-config --ldflags --embed
最终编写Makefile:
# /home/dell/Work4/workspace/user_work4/python_env/bin/python3-config --cflags --embed COMPILE_FLAG = -I/home/dell/Work4/workspace/user_work4/python_env/include/python3.10 -I/home/dell/Work4/workspace/user_work4/python_env/include/python3.10 -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall # /home/dell/Work4/workspace/user_work4/python_env/bin/python3-config --ldflags --embed LINK_FLAG = -L/home/dell/Work4/workspace/user_work4/python_env/lib -lpython3.10 -lcrypt -lpthread -ldl -lutil -lm -lm .PHONY: host host: main_c.o gcc main_c.o -o run.exe $(LINK_FLAG) main_c.o: main_c.cpp gcc main_c.cpp -c -o main_c.o $(COMPILE_FLAG)
标签:img,Python,dell,C++,python,env,Linux,home From: https://www.cnblogs.com/Dee-sir/p/18394146