首页 > 系统相关 >C++ 列式内存布局数据存储格式 Arrow

C++ 列式内存布局数据存储格式 Arrow

时间:2024-07-25 20:25:13浏览次数:25  
标签:std Arrow 列式 auto C++ arrow shared array tb

Apache Arrow 优点 :
    高性能数据处理: Arrow 使用列式内存布局,这特别适合于数据分析和查询操作,因为它允许对数据进行高效批量处理,减少CPU缓存未命中,从而提升处理速度。
    零拷贝数据共享: Arrow 允许不同系统和进程之间直接共享内存中的数据而无需复制,这对于提高数据密集型应用的效率至关重要,减少了内存使用和CPU开销。
    跨平台兼容性: Arrow 是一个跨语言开发平台,支持C++, Java, Python等多种编程语言,促进了不同软件组件间的互操作性。
    标准化数据格式: 定义了一套统一的数据格式规范,使得数据可以在不同系统间无缝传递,降低了数据转换的成本和复杂性。
    优化大数据处理: 特别是在与大数据框架(如Spark、Pandas)集成时,Arrow 可显著加速数据加载、处理和分析的速度,例如,与PySpark集成后数据处理速度提升高达53倍。
    集成广泛: 被众多数据处理工具和库采用,如Pandas、Parquet、Drill、Spark等,形成了强大的生态系统。
Apache Arrow 缺点 :
    内存消耗: 列式存储相对于行式存储可能需要更多的内存,尤其是在处理稀疏数据或宽表时,因为每一列都需要分配连续的内存空间。
    不适合所有场景: 对于需要频繁随机访问记录或更新操作的场景,Arrow 的列式存储可能不如传统的行式存储高效。
    学习曲线: 对于新用户来说,理解和掌握Arrow的数据结构和API可能需要一定时间,尤其是当他们习惯于使用其他数据处理模型时。
    生态成熟度: 虽然Arrow的生态系统正在快速发展,但在某些特定领域或小众技术栈中,相关支持和工具可能不够丰富或成熟。
    实现复杂性: 对于开发者来说,实现Arrow的高效利用可能涉及到复杂的内存管理和优化策略,这在某些情况下可能会增加开发难度。


#define ARROW_COMPUTE

#include <arrow/compute/api.h>
#include "arrow/pretty_print.h"
#include <arrow/api.h>
#include <arrow/csv/api.h>
#include <arrow/json/api.h>
#include <arrow/io/api.h>
#include <arrow/table.h>
#include <arrow/pretty_print.h>
#include <arrow/result.h>
#include <arrow/status.h>
#include <arrow/ipc/api.h>
#include <parquet/arrow/reader.h>
#include <parquet/arrow/writer.h>
#include <parquet/exception.h>
#include <memory>
#include <iostream>

template <typename T>
using numbuildT = arrow::NumericBuilder<T>;


struct ArrowUtil {
    static arrow::Status read_csv(char const* file_name, std::shared_ptr<arrow::Table>& tb);
    static arrow::Status read_ipc(char const* file_name, std::shared_ptr<arrow::Table>& tb);
    static arrow::Status read_parquet(char const* file_name, std::shared_ptr<arrow::Table>& tb);
    static arrow::Status read_json(char const* file_name, std::shared_ptr<arrow::Table>& tb);

    static arrow::Status write_ipc(arrow::Table const& tb, char const* file_name);
    static arrow::Status write_parquet(arrow::Table const& tb, char const* file_name);

    template <typename T, typename buildT, typename arrayT>
    inline static std::shared_ptr<arrow::Array> chunked_array_to_array(std::shared_ptr<arrow::ChunkedArray> const& array_a) {
        buildT int64_builder;
        int64_builder.Resize(array_a->length());
        std::vector<T> int64_values;
        int64_values.reserve(array_a->length());
        for (int i = 0; i < array_a->num_chunks(); ++i) {
            auto inner_arr = array_a->chunk(i);
            auto int_a = std::static_pointer_cast<arrayT>(inner_arr);
            for (int j = 0; j < int_a->length(); ++j) {
                int64_values.push_back(int_a->Value(j));
            }
        }

        int64_builder.AppendValues(int64_values);
        std::shared_ptr<arrow::Array> array_a_res;
        int64_builder.Finish(&array_a_res);
        return array_a_res;
    }


    template <typename T, typename arrayT>
    inline static std::vector<T> chunked_array_to_vector(std::shared_ptr<arrow::ChunkedArray> const& array_a) {
        std::vector<T> int64_values;
        int64_values.reserve(array_a->length());
        for (int i = 0; i < array_a->num_chunks(); ++i) {
            auto inner_arr = array_a->chunk(i);
            auto int_a = std::static_pointer_cast<arrayT>(inner_arr);
            for (int j = 0; j < int_a->length(); ++j) {
                int64_values.push_back(int_a->Value(j));
            }
        }
        return int64_values;
    }

    inline static std::vector<std::string> chunked_array_to_str_vector(std::shared_ptr<arrow::ChunkedArray> const& array_a) {
        std::vector<std::string> int64_values;
        int64_values.reserve(array_a->length());
        for (int i = 0; i < array_a->num_chunks(); ++i) {
            auto inner_arr = array_a->chunk(i);
            auto int_a = std::static_pointer_cast<arrow::StringArray>(inner_arr);
            for (int j = 0; j < int_a->length(); ++j) {
                int64_values.push_back(int_a->Value(j).data());
            }
        }
        return int64_values;
    }


    inline static std::shared_ptr<arrow::Array> chunked_array_to_str_array(std::shared_ptr<arrow::ChunkedArray> const& array_a) {
        arrow::StringBuilder int64_builder;
        int64_builder.Resize(array_a->length());
        std::vector<std::string> int64_values;
        int64_values.reserve(array_a->length());
        for (int i = 0; i < array_a->num_chunks(); ++i) {
            auto inner_arr = array_a->chunk(i);
            auto int_a = std::static_pointer_cast<arrow::StringArray>(inner_arr);
            for (int j = 0; j < int_a->length(); ++j) {
                int64_values.push_back(int_a->Value(j).data());
            }
        }
        int64_builder.AppendValues(int64_values);
        std::shared_ptr<arrow::Array> array_a_res;
        int64_builder.Finish(&array_a_res);
        return array_a_res;
    }
};


arrow::Status ArrowUtil::read_csv(char const* file_name, std::shared_ptr<arrow::Table>& tb) {
    ARROW_ASSIGN_OR_RAISE(auto input_file,
        arrow::io::ReadableFile::Open(file_name));
    ARROW_ASSIGN_OR_RAISE(auto csv_reader,
        arrow::csv::TableReader::Make(
            arrow::io::default_io_context(), input_file,
            arrow::csv::ReadOptions::Defaults(),
            arrow::csv::ParseOptions::Defaults(),
            arrow::csv::ConvertOptions::Defaults()));
    ARROW_ASSIGN_OR_RAISE(auto table, csv_reader->Read());
    tb = table;
    return arrow::Status::OK();
}

arrow::Status ArrowUtil::read_ipc(char const* file_name, std::shared_ptr<arrow::Table>& tb) {
    ARROW_ASSIGN_OR_RAISE(auto input_file,
        arrow::io::ReadableFile::Open(file_name));

    ARROW_ASSIGN_OR_RAISE(auto ipc_reader, arrow::ipc::RecordBatchFileReader::Open(input_file));

    std::vector<std::shared_ptr<arrow::RecordBatch>> batches;
    batches.reserve(ipc_reader->num_record_batches());

    for (int i = 0; i < ipc_reader->num_record_batches(); ++i) {
        ARROW_ASSIGN_OR_RAISE(auto a_record, ipc_reader->ReadRecordBatch(i));
        batches.emplace_back(std::move(a_record));
    }

    arrow::Table::FromRecordBatches(ipc_reader->schema(), std::move(batches)).Value(&tb);

    return arrow::Status::OK();
}

arrow::Status ArrowUtil::read_parquet(char const* file_name, std::shared_ptr<arrow::Table>& tb) {
    std::shared_ptr<arrow::io::ReadableFile> infile;
    PARQUET_ASSIGN_OR_THROW(infile,
        arrow::io::ReadableFile::Open(file_name,
            arrow::default_memory_pool()));

    std::unique_ptr<parquet::arrow::FileReader> reader;
    PARQUET_THROW_NOT_OK(
        parquet::arrow::OpenFile(infile, arrow::default_memory_pool(), &reader));
    std::shared_ptr<arrow::Table> table;
    PARQUET_THROW_NOT_OK(reader->ReadTable(&table));
    tb = table;
    return arrow::Status::OK();
}

arrow::Status ArrowUtil::read_json(char const* file_name, std::shared_ptr<arrow::Table>& tb) {
    std::shared_ptr<arrow::io::ReadableFile> infile;
    PARQUET_ASSIGN_OR_THROW(infile,
        arrow::io::ReadableFile::Open(file_name,
            arrow::default_memory_pool()));

    ARROW_ASSIGN_OR_RAISE(auto reader, arrow::json::TableReader::Make(arrow::default_memory_pool(), infile, arrow::json::ReadOptions::Defaults(), arrow::json::ParseOptions::Defaults()));

    ARROW_ASSIGN_OR_RAISE(auto res_tb, reader->Read());
    tb = res_tb;
    return arrow::Status::OK();
}

arrow::Status ArrowUtil::write_ipc(arrow::Table const& tb, char const* file_name) {

    ARROW_ASSIGN_OR_RAISE(auto output_file,
        arrow::io::FileOutputStream::Open(file_name));
    ARROW_ASSIGN_OR_RAISE(auto batch_writer,
        arrow::ipc::MakeFileWriter(output_file, tb.schema()));
    ARROW_RETURN_NOT_OK(batch_writer->WriteTable(tb));
    ARROW_RETURN_NOT_OK(batch_writer->Close());

    return arrow::Status::OK();
}

arrow::Status ArrowUtil::write_parquet(arrow::Table const& tb, char const* file_name) {
    std::shared_ptr<arrow::io::FileOutputStream> outfile;
    PARQUET_ASSIGN_OR_THROW(
        outfile, arrow::io::FileOutputStream::Open(file_name));
    // The last argument to the function call is the size of the RowGroup in
    // the parquet file. Normally you would choose this to be rather large but
    // for the example, we use a small value to have multiple RowGroups.
    PARQUET_THROW_NOT_OK(
        parquet::arrow::WriteTable(tb, arrow::default_memory_pool(), outfile, 3));
    return arrow::Status::OK();
}



void testReadCSV() {
    // 读取CSV文件
    char const* csv_path = "./test.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(csv_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    assert(tb_.num_rows() == 2);
}

void testWriteIpc() {
    // 读取CSV文件并写入IPC文件
    char const* csv_path = "./test.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(csv_path, tb);
    auto const& tb_ = *tb;

    char const* write_csv_path = "./test_dst.arrow";
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto write_res = ArrowUtil::write_ipc(tb_, write_csv_path);
    assert(write_res == arrow::Status::OK());
}

void testReadIPC() {
    // 读取Arrow IPC 文件
    char const* ipc_path = "./test_dst.arrow";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_ipc(ipc_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    assert(tb_.num_rows() == 2);
}


void testWriteParquet() {
    // 写入Parquet文件
    char const* csv_path = "./test.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(csv_path, tb);
    auto const& tb_ = *tb;

    char const* write_parquet_path = "./test_dst.parquet";
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto write_res = ArrowUtil::write_parquet(tb_, write_parquet_path);
    assert(write_res == arrow::Status::OK());
}


void testReadParquet() {
    // 读取 Parquet
    char const* parquet_path = "./test_dst.parquet";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_parquet(parquet_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    assert(tb_.num_rows() == 2);
}

void testReadJson() {
    // 读取Json文件
    char const* json_path = "./test.json";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_json(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    assert(tb_.num_rows() == 2);
}

void testComputeGreater() {
    // 比较两列 int 值中 int1 > int2的值, greater函数
    char const* json_path = "./comp_gt.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto array_a = tb_.GetColumnByName("int1");
    auto array_b = tb_.GetColumnByName("int2");

    auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);
    auto array_b_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_b);

    auto compared_datum = arrow::compute::CallFunction("greater", { array_a_res, array_b_res });
    auto array_a_gt_b_compute = compared_datum->make_array();

    arrow::PrettyPrint(*array_a_gt_b_compute, {}, &std::cerr);

    auto schema =
        arrow::schema({ arrow::field("int1", arrow::int64()), arrow::field("int2", arrow::int64()),
                       arrow::field("a>b? (arrow)", arrow::boolean()) });

    std::shared_ptr<arrow::Table> my_table = arrow::Table::Make(
        schema, { array_a_res, array_b_res, array_a_gt_b_compute }, tb_.num_rows());

    arrow::PrettyPrint(*my_table, {}, &std::cerr);
}

void testComputeMinMax() {
    // 计算int1列的最大值和最小值
    char const* json_path = "./comp_gt.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto array_a = tb_.GetColumnByName("int1");
    auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    auto min_max = arrow::compute::CallFunction("min_max", { array_a_res }, &scalar_aggregate_options);

    // Unpack struct scalar result (a two-field {"min", "max"} scalar)
    auto min_value = min_max->scalar_as<arrow::StructScalar>().value[0];
    auto max_value = min_max->scalar_as<arrow::StructScalar>().value[1];

    assert(min_value->ToString() == "1");
    assert(max_value->ToString() == "8");
}

#define GTEST_TEST(a, b) void a##_##b()
#define ASSERT_EQ(a, b) assert(a == b)

GTEST_TEST(RWTests, ComputeMean) {
    // 计算int1列的平均值
    char const* json_path = "../data/comp_gt.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto array_a = tb_.GetColumnByName("int1");
    auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    auto mean = arrow::compute::CallFunction("mean", { array_a_res }, &scalar_aggregate_options);

    auto const& mean_value = mean->scalar_as<arrow::Scalar>();

    ASSERT_EQ(mean_value.ToString(), "4.5");
}

GTEST_TEST(RWTests, ComputeAdd) {
    // 将第一列的值加3
    char const* json_path = "../data/comp_gt.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto array_a = tb_.GetColumnByName("int1");
    auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    std::shared_ptr<arrow::Scalar> increment = std::make_shared<arrow::Int64Scalar>(3);

    auto add = arrow::compute::CallFunction("add", { array_a_res, increment }, &scalar_aggregate_options);
    std::shared_ptr<arrow::Array> incremented_array = add->array_as<arrow::Array>();
    arrow::PrettyPrint(*incremented_array, {}, &std::cerr);
}


GTEST_TEST(RWTests, ComputeAddArray) {
    // int1和int2两列相加
    char const* json_path = "../data/comp_gt.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto array_a = tb_.GetColumnByName("int1");
    auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);

    auto array_b = tb_.GetColumnByName("int2");
    auto array_b_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_b);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    auto add = arrow::compute::CallFunction("add", { array_a_res, array_b_res }, &scalar_aggregate_options);
    std::shared_ptr<arrow::Array> incremented_array = add->array_as<arrow::Array>();
    arrow::PrettyPrint(*incremented_array, {}, &std::cerr);
}

GTEST_TEST(RWTests, ComputeStringEqual) {
    // 比较s1和s2两列是否相等
    char const* json_path = "../data/comp_s_eq.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);

    auto array_a = tb_.GetColumnByName("s1");
    auto array_a_res = ArrowUtil::chunked_array_to_str_array(array_a);

    auto array_b = tb_.GetColumnByName("s2");
    auto array_b_res = ArrowUtil::chunked_array_to_str_array(array_b);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    auto eq_ = arrow::compute::CallFunction("equal", { array_a_res, array_b_res }, &scalar_aggregate_options);
    std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();
    arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}

GTEST_TEST(RWTests, ComputeCustom) {
    // 自己写算法逐个比较相等 
    char const* json_path = "../data/comp_s_eq.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto arr1 = tb_.GetColumnByName("s1");
    auto arr2 = tb_.GetColumnByName("s2");
    auto v1 = ArrowUtil::chunked_array_to_str_vector(arr1);
    auto v2 = ArrowUtil::chunked_array_to_str_vector(arr2);
    for (std::size_t i = 0; i < v1.size(); ++i) {
        if (v1[i] != v2[i]) {
            std::cerr << v1[i] << "!=" << v2[i] << "\n";
        }
    }
}

GTEST_TEST(RWTests, ComputeCustomDbl) {
    // 自己写算法比较double值
    char const* json_path = "../data/custom_dbl.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto arr1 = tb_.GetColumnByName("dbl1");
    auto arr2 = tb_.GetColumnByName("dbl2");
    auto v1 = ArrowUtil::chunked_array_to_vector<double, arrow::DoubleArray>(arr1);
    auto v2 = ArrowUtil::chunked_array_to_vector<double, arrow::DoubleArray>(arr2);
    for (std::size_t i = 0; i < v1.size(); ++i) {
        if (v1[i] != v2[i]) {
            std::cerr << v1[i] << "!=" << v2[i] << "\n";
        }
    }
}

GTEST_TEST(RWTests, ComputeEqualDbl) {
    // 使用equal函数比较double值
    char const* json_path = "../data/custom_dbl.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);
    auto arr1 = tb_.GetColumnByName("dbl1");
    auto arr2 = tb_.GetColumnByName("dbl2");

    auto dbl_arr1 = ArrowUtil::chunked_array_to_array<double, numbuildT<arrow::DoubleType>, arrow::DoubleArray>(arr1);
    auto dbl_arr2 = ArrowUtil::chunked_array_to_array<double, numbuildT<arrow::DoubleType>, arrow::DoubleArray>(arr2);

    arrow::compute::ScalarAggregateOptions scalar_aggregate_options;
    scalar_aggregate_options.skip_nulls = false;

    auto eq_ = arrow::compute::CallFunction("equal", { dbl_arr1, dbl_arr2 }, &scalar_aggregate_options);
    std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();
    arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}

GTEST_TEST(RWTests, StrStartsWith) {
    // 计算s1列以是否以 Zha开头的值
    char const* json_path = "../data/comp_s_eq.csv";
    std::shared_ptr<arrow::Table> tb;
    ArrowUtil::read_csv(json_path, tb);
    auto const& tb_ = *tb;
    arrow::PrettyPrint(tb_, {}, &std::cerr);

    auto array_a = tb_.GetColumnByName("s1");
    auto array_a_res = ArrowUtil::chunked_array_to_str_array(array_a);

    arrow::compute::MatchSubstringOptions options("Zha");

    auto eq_ = arrow::compute::CallFunction("starts_with", { array_a_res }, &options);
    std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();
    arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}



using arrow::Int32Builder;
using arrow::Int64Builder;
using arrow::DoubleBuilder;
using arrow::StringBuilder;

struct row_data {
    int32_t col1;
    int64_t col2;
    double col3;
    std::string col4;
};//行结构

#define EXIT_ON_FAILURE(expr)                      \
  do {                                             \
    arrow::Status status_ = (expr);                \
    if (!status_.ok()) {                           \
      std::cerr << status_.message() << std::endl; \
      return EXIT_FAILURE;                         \
    }                                              \
  } while (0);

arrow::Status CreateTable(const std::vector<struct row_data>& rows, std::shared_ptr<arrow::Table>* table) {

    //使用arrow::jemalloc::MemoryPool::default_pool()构建器更有效,因为这可以适当增加底层内存区域的大小.
    arrow::MemoryPool* pool = arrow::default_memory_pool();

    Int32Builder col1_builder(pool);
    Int64Builder col2_builder(pool);
    DoubleBuilder col3_builder(pool);
    StringBuilder col4_builder(pool);

    //现在我们可以循环我们现有的数据,并将其插入到构建器中。这里的' Append '调用可能会失败(例如,我们无法分配足够的额外内存)。因此我们需要检查它们的返回值。
    for (const row_data& row : rows) {
        ARROW_RETURN_NOT_OK(col1_builder.Append(row.col1));
        ARROW_RETURN_NOT_OK(col2_builder.Append(row.col2));
        ARROW_RETURN_NOT_OK(col3_builder.Append(row.col3));
        ARROW_RETURN_NOT_OK(col4_builder.Append(row.col4));
    }

    //添加空值,末尾值的元素为空
    ARROW_RETURN_NOT_OK(col1_builder.AppendNull());
    ARROW_RETURN_NOT_OK(col2_builder.AppendNull());
    ARROW_RETURN_NOT_OK(col3_builder.AppendNull());
    ARROW_RETURN_NOT_OK(col4_builder.AppendNull());

    std::shared_ptr<arrow::Array> col1_array;
    ARROW_RETURN_NOT_OK(col1_builder.Finish(&col1_array));
    std::shared_ptr<arrow::Array> col2_array;
    ARROW_RETURN_NOT_OK(col2_builder.Finish(&col2_array));
    std::shared_ptr<arrow::Array> col3_array;
    ARROW_RETURN_NOT_OK(col3_builder.Finish(&col3_array));
    std::shared_ptr<arrow::Array> col4_array;
    ARROW_RETURN_NOT_OK(col4_builder.Finish(&col4_array));

    std::vector<std::shared_ptr<arrow::Field>> schema_vector = {
            arrow::field("col1", arrow::int32()), arrow::field("col2", arrow::int64()), arrow::field("col3", arrow::float64()),
            arrow::field("col4", arrow::utf8()) };

    auto schema = std::make_shared<arrow::Schema>(schema_vector);

    //最终的' table '变量是我们可以传递给其他可以使用Apache Arrow内存结构的函数的变量。这个对象拥有所有引用数据的所有权,
    //因此一旦我们离开构建表及其底层数组的函数的作用域,就不必关心未定义的引用。
    *table = arrow::Table::Make(schema, { col1_array, col2_array, col3_array,col4_array });

    return arrow::Status::OK();
}

arrow::Status TableToVector(const std::shared_ptr<arrow::Table>& table,
    std::vector<struct row_data>* rows) {
    //检查表结构是否一致
    std::vector<std::shared_ptr<arrow::Field>> schema_vector = {
            arrow::field("col1", arrow::int32()), arrow::field("col2", arrow::int64()), arrow::field("col3", arrow::float64()),
            arrow::field("col4", arrow::utf8()) };
    auto expected_schema = std::make_shared<arrow::Schema>(schema_vector);

    if (!expected_schema->Equals(*table->schema())) {
        // The table doesn't have the expected schema thus we cannot directly
        // convert it to our target representation.
        return arrow::Status::Invalid("Schemas are not matching!");
    }

    //获取对应列数据指针
    auto col1s =
        std::static_pointer_cast<arrow::Int32Array>(table->column(0)->chunk(0));
    auto col2s =
        std::static_pointer_cast<arrow::Int64Array>(table->column(1)->chunk(0));
    auto col3s =
        std::static_pointer_cast<arrow::DoubleArray>(table->column(2)->chunk(0));
    auto col4s =
        std::static_pointer_cast<arrow::StringArray>(table->column(3)->chunk(0));

    for (int64_t i = 0; i < table->num_rows(); i++) {
        if (col1s->IsNull(i)) {
            assert(i == 3);//第四行为null
        }
        else {
            int32_t col1 = col1s->Value(i);
            int64_t col2 = col2s->Value(i);
            double col3 = col3s->Value(i);
            std::string col4 = col4s->GetString(i);
            rows->push_back({ col1, col2, col3,col4 });
        }
    }

    return arrow::Status::OK();
}

// 行数组和列数组相互转换
int testTableConvertSTL() {
    //行数组
    std::vector<row_data> rows = {
            {1, 11,1.0, "John"}, {2, 22,2.0, "Tom"}, {3,33, 3.0,"Susan"} };

    std::shared_ptr<arrow::Table> table;
    EXIT_ON_FAILURE(CreateTable(rows, &table));

    std::vector<row_data> expected_rows;
    EXIT_ON_FAILURE(TableToVector(table, &expected_rows));
    std::cout << expected_rows.size() << std::endl;
    assert(rows.size() == expected_rows.size());
    return 0;
}

void test() {
    // 构建一个int8数组
    arrow::Int8Builder builder;
    arrow::Int16Builder int16builder;
    int8_t days_raw[5] = { 1, 12, 17, 23, 28 };
    int8_t months_raw[5] = { 1, 3, 5, 7, 1 };
    int16_t years_raw[5] = { 1990, 2000, 1995, 2000, 1995 };
    builder.AppendValues(days_raw, 5);
    std::shared_ptr<arrow::Array> days = builder.Finish().MoveValueUnsafe();    
    builder.AppendValues(months_raw, 5);
    std::shared_ptr<arrow::Array> months = builder.Finish().MoveValueUnsafe();    
    int16builder.AppendValues(years_raw, 5);
    std::shared_ptr<arrow::Array> years = int16builder.Finish().MoveValueUnsafe();

    // Schema 自定义table
    // Now, we want a RecordBatch, which has columns and labels for said columns.
    // This gets us to the 2d data structures we want in Arrow.
    // These are defined by schema, which have fields -- here we get both those object types
    // ready.
    std::shared_ptr<arrow::Field> field_day, field_month, field_year;
    std::shared_ptr<arrow::Schema> schema;

    // Every field needs its name and data type.
    field_day = arrow::field("Day", arrow::int8());
    field_month = arrow::field("Month", arrow::int8());
    field_year = arrow::field("Year", arrow::int16());

    // The schema can be built from a vector of fields, and we do so here.
    schema = arrow::schema({ field_day, field_month, field_year });

    // 打印
    // With the schema and Arrays full of data, we can make our RecordBatch! Here,
    // each column is internally contiguous. This is in opposition to Tables, which we'll
    // see next.
    std::shared_ptr<arrow::RecordBatch> rbatch;
    // The RecordBatch needs the schema, length for columns, which all must match,
    // and the actual data itself.
    rbatch = arrow::RecordBatch::Make(schema, days->length(), { days, months, years });
    std::cout << rbatch->ToString();
    /*
    Day:   [
        1,
        12,
        17,
        23,
        28
      ]
    Month:   [
        1,
        3,
        5,
        7,
        1
      ]
    Year:   [
        1990,
        2000,
        1995,
        2000,
        1995
      ]
    */

    // stl vector容器
    arrow::ArrayVector day_vecs{days};
    std::shared_ptr<arrow::ChunkedArray> day_chunks =
        std::make_shared<arrow::ChunkedArray>(day_vecs);
    testTableConvertSTL();

    testReadCSV();
    /*
    col1: string
    col2: string
    col3: string
    ----
    col1:
      [
        [
          "val1",
          "val1"
        ]
      ]
    col2:
      [
        [
          "val2",
          "val2"
        ]
      ]
    col3:
      [
        [
          "val3",
          "val3"
        ]
    ]
    */
    testWriteIpc();
    testReadIPC();
    //testComputeGreater();
    //testComputeMinMax();
}

Compute Functions — Apache Arrow v17.0.0

GitHub - apache/arrow: Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing


创作不易,小小的支持一下吧!

标签:std,Arrow,列式,auto,C++,arrow,shared,array,tb
From: https://blog.csdn.net/qq_30220519/article/details/140699186

相关文章

  • C++设计模式汇总
    李忠建老师讲授设计模式笔记更新到抽象工厂模式:组件协作类:模板方法策略模式观察者模式单一职责类:装饰器模式桥模式模式对象创建类:工厂方法抽象工厂方法原型模式构建器模式对象性能类:单例模式享元模式接口隔离类:门面模式代理模式适配器模式中介者模式状态变......
  • C++学习笔记-operator关键字:重载与自定义操作符
    在C++编程中,operator关键字扮演着极其重要且独特的角色。它允许开发者为内置类型或自定义类型重载或定义新的操作符行为。这一特性极大地增强了C++的表达能力,使得代码更加直观、易于理解和维护。本文将深入探讨C++中operator关键字的使用,包括操作符重载和自定义操作符的基本......
  • 设计模式C++001__模板方法
    设计模式C++001__模板方法“组件协作”模式:现代软件专业分工之后的第一个结果就是“框架与应用程序的划分”,组件“协作”模式通过晚绑定,来实现框架与应用程序之间的松耦合。包括:模版方法,观察者模式,策略模式1、模板方法模式:动机:在软件构建过程中,对于一项任务,它常常有稳定的整......
  • 设计模式C++002__策略模式
    设计模式C++002__策略模式1、动机:在软件构建过程中,某些对象使用的算法是多种多样的,经常改变,如果将这些算法都编码到对象中,将会使对象变得异常复杂;而且有时候支持不使用的算法也是一个性能负担。?如何在运行时根据需要透明地更改对象的算法?将算法与对象本身解耦,从而避免上述问题?......
  • 设计模式C++003__观察者模式
    设计模式C++003__观察者模式1、动机:在软件构建过程中,我们需要为某些对象建立一种“通过依赖关系”--一个对象(目标对象)的状态发生改变,所有的依赖对象(观察者对象)都将得到通知。如果这样的依赖关系过于紧密,将使得软件不好抵御变化。?使用面向对象技术,可以将这种依赖关系弱化,并形成......
  • 设计模式C++004__装饰器模式
    设计模式C++004__装饰器模式在软件组件设计中,如果职责划分不清晰,使用继承得到的结果往往会随着需求的变化,子类急剧膨胀,同时充斥着重复代码,这时候关键是划清责任。单一职责模式分类中的设计模式:装饰器模式,桥模式1、装饰器模式:动机:在某些情况下,我们可能会“过渡地使用继承来扩......
  • 设计模式C++005__桥模式
    设计模式C++005__桥模式也是组合模式的具体体现。1、动机:由于某些类型的古有的实现逻辑,使得他们具有两个变化的维度,乃至多个维度的变化。?如何应对这种“多维度的变化”,如何利用面向对象技术来使得类型可以轻松地沿着两个乃至多个方向变化,而不引入额外的复杂度。2、桥模式:将......
  • 设计模式C++007__抽象工厂方法模式
    设计模式C++007__抽象工厂方法模式抽象工厂方法1、动机:在软件系统重,经常面临着“一系列相互依赖的对象”的创建工作;同时,由于需求的变化,往往存在更多系列对象的创建工作。?如何应对这种变化?如何绕过常规的对象创建方法(new),提供一种封装机制,来避免客户程序和这种“多系列具体对象......
  • c++学习笔记(五)
    目录文件操作文本文件写文件include读文件include二进制文件写文件读文件文件操作程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放通过文件可以将数据持久化c++中对文件操作需要包含头文件文件类型分为两种:文本文件-文件以文本的ASCII码形式存储在计算......
  • C++| STL之unordered_map(哈希表)和map
    前言:Leetcode题目中有一个哈希表的专题,自己实现的话没必要,可以直接用STL现成的unordered_map函数,提到unordered_map就不得不提到map,于是有了此篇相关知识点的汇总。unordered_map和mapkey和valueunordered_map使用map原理对比unordered_map使用对比unordered_mapke......