首页 > 系统相关 >linux内核下并发时同步机制

linux内核下并发时同步机制

时间:2024-07-14 17:40:47浏览次数:23  
标签:percpu int lock void 并发 内核 linux CPU atomic

1 并发场景

Linux 系统并发产生的原因很复杂,总结一下有下面几个主要原 因:

  1. 多线程并发访问,Linux 是多任务(线程)的系统,所以多线程访问是最基本的原因。
  2. 抢占式并发访问,从 2.6 版本内核开始,Linux 内核支持抢占,也就是说调度程序可以 在任意时刻抢占正在运行的线程,从而运行其他的线程。
  3. 中断程序并发访问,这个无需多说,学过 STM32 的同学应该知道,硬件中断的权利可 是很大的。
  4. SMP(多核)核间并发访问,现在 ARM 架构的多核 SOC 很常见,多核 CPU 存在核间并 发访问。

2 并发解决方案

2.1 临界区的原子操作引入

所谓的临界区就是共享数据段,如全局变量,对于临界区必须保证一次只有一个线程访问,也就是要保证临 界区是原子访问的。我们都知道,原子是化学反应不可再分的基本微粒,这里的原子访问就表示这一个访问是一个步骤,不能再进行拆分。

示例1:

a=3;

假设变量 a 的地址为 0X3000000,“a=3”这一行 C 语言可能会被编译为如下所示的汇编代码:

ldr r0, =0X30000000 /* 变量 a 地址 */
2 ldr r1, = 3 /* 要写入的值 */
3 str r1, [r0] /* 将 3 写入到 a 变量中 */

如果多线程同时执行这条语句。我们期望的执行顺序:

image

实际执行顺序可能是:

image

线程 A 最终将变量 a 设置为了 20,而并不是要求的 10线程 B 没有问题,是期望的a设置成了20,这就是并发竞态。我们希望三条汇编指令一次性执行完,不被打断和拆解,这就是原子操作。

2.2 原子操作API

2.2.1 整数原子操作

typedef struct {
	int counter;
} atomic_t;
atomic_t b = ATOMIC_INIT(0); //定义原子变量 b 并赋初值为 0
atomic_set(&b, 10); /* 设置 b=10 */
atomic_read(&b); /* 读取 b 的值,肯定是 10 */
atomic_inc(&b); /* b 的值加 1,v=11 */

typedef struct {
 	long long counter;
} atomic64_t;
atomic64_t c = ATOMIC64_INIT(0); //定义64位系统原子变量 c 并赋初值为 0
//注意:如果使用的是64 位的 SOC,那么建议使用 64 位的原子操作函数。Cortex-A7 (armv7)是 32 位的架构,Cortex-A53(armv8)64位架构。

函数 描述
ATOMIC_INIT(int i) 定义原子变量的时候对其初始化。
int atomic_read(atomic_t *v) 读取 v 的值,并且返回。
void atomic_set(atomic_t *v, int i) 向 v 写入 i 值。
void atomic_add(int i, atomic_t *v) 给 v 加上 i 值。
void atomic_sub(int i, atomic_t *v) 从 v 减去 i 值。
void atomic_inc(atomic_t *v) 给 v 加 1,也就是自增。
void atomic_dec(atomic_t *v) 从 v 减 1,也就是自减
int atomic_dec_return(atomic_t *v) 从 v 减 1,并且返回 v 的值。
int atomic_inc_return(atomic_t *v) 给 v 加 1,并且返回 v 的值。
atomic_add_return(int i, atomic_t *v) 给 v 加 i,并且返回 v 的值。
atomic_sub_return(int i, atomic_t *v) 给 v 减 i,并且返回 v 的值。
int atomic_sub_and_test(int i, atomic_t *v) 从 v 减 i,如果结果为 0 就返回真,否则返回假
int atomic_dec_and_test(atomic_t *v) 从 v 减 1,如果结果为 0 就返回真,否则返回假
int atomic_inc_and_test(atomic_t *v) 给 v 加 1,如果结果为 0 就返回真,否则返回假
int atomic_add_negative(int i, atomic_t *v) 给 v 加 i,如果结果为负就返回真,否则返回假
atomic_cmpxchg(atomic_t *ptr, int old, int new) 比较old和原子变量ptr中的值,如果相等,那么就把new值赋给原子变量。返回旧的原子变量ptr中的值

例:

static int led_open(struct inode *inode, struct file *filp)
{
	if (!atomic_dec_and_test(&gpioled.lock)) {
		atomic_inc(&gpioled.lock);/* 小于 0 的话就加 1,使其原子变量等于 0 */
		return -EBUSY; /* LED 被使用,返回忙 */
    }
    filp->private_data = &gpioled;
	return 0;
}

static int led_release(struct inode *inode, struct file *filp)
{
	struct gpioled_dev *dev = filp->private_data;

	/* 关闭驱动文件的时候释放原子变量 */
	atomic_inc(&dev->lock);
	return 0;
}

static int __init led_init(void)
{
	/* 初始化原子变量 */
	atomic_set(&gpioled.lock, 1); /* 原子变量初始值为 1 */
}

该例子用来实现一次只能允许一个应用访问 LED 灯,不能多个进程同时操作LED。第一个用户程序进行open,成功此时原子值counter=0,第二个用户程序进行open就会fail, 直到第一个用户程序close, counter会进行加一,此时第二个程序才可以open成功。

2.2.2 位原子操作

原 子位操作不像原子整形变量那样有个 atomic_t 的数据结构,原子位操作是直接对内存进行操作:

函数 描述
void set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1。
void clear_bit(int nr,void *p) 将 p 地址的第 nr 位清零。
void change_bit(int nr, void *p) 将 p 地址的第 nr 位进行翻转。
int test_bit(int nr, void *p) 获取 p 地址的第 nr 位的值。
int test_and_set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1,并且返回 nr 位原来的值。
int test_and_clear_bit(int nr, void *p) 将 p 地址的第 nr 位清零,并且返回 nr 位原来的值。
int test_and_change_bit(int nr, void *p) 将 p 地址的第 nr 位翻转,并且返回 nr 位原来的值。

2.3 自旋锁

原子操作只能对整形变量或者位进行保护,但是,在实际的使用环境中怎么可能只有整形 变量或位这么简单的临界区。

自旋锁的定义:

对于自旋锁而言,如果自旋锁 正在被线程 A 持有,线程 B 想要获取自旋锁,那么线程 B 就会处于忙循环-旋转-等待状态,线 程 B 不会进入休眠状态或者说去做其他的处理,而是会一直傻傻的在那里“转圈圈”的等待锁 可用。比如现在有个公用电话亭,一次肯定只能进去一个人打电话,现在电话亭里面有人正在 打电话,相当于获得了自旋锁。此时你到了电话亭门口,因为里面有人,所以你不能进去打电 话,相当于没有获取自旋锁,这个时候你肯定是站在原地等待,你可能因为无聊的等待而转圈 圈消遣时光,反正就是哪里也不能去,要一直等到里面的人打完电话出来。终于,里面的人打 完电话出来了,相当于释放了自旋锁,这个时候你就可以使用电话亭打电话了,相当于获取到 了自旋锁。

自旋锁的“自旋”也就是“原地打转”的意思,“原地打转”的目的是为了等待自旋锁可以 用,可以访问共享资源。把自旋锁比作一个变量 a,变量 a=1 的时候表示共享资源可用,当 a=0 的时候表示共享资源不可用。现在线程 A 要访问共享资源,发现 a=0(自旋锁被其他线程持有), 那么线程 A 就会不断的查询 a 的值,直到 a=1。可

缺点:获取自旋锁会原地等待,会浪费处理器时间,降低系统性能,所以自旋锁 的持有时间不能太长。如果临界区比较大,运行时间比较长的话要选择信号量和互斥体。

适用范围:适用于短时期的轻量级加锁。

image

2.3.1 自旋锁API

函数 描述
DEFINE_SPINLOCK(spinlock_t lock) 定义并初始化一个自选变量。
int spin_lock_init(spinlock_t *lock) 初始化自旋锁。
void spin_lock(spinlock_t *lock) 获取指定的自旋锁,也叫做加锁。
void spin_unlock(spinlock_t *lock) 释放指定的自旋锁。
int spin_trylock(spinlock_t *lock) 尝试获取指定的自旋锁,如果没有获取到就返回 0
int spin_is_locked(spinlock_t *lock) 检查指定的自旋锁是否被获取,如果没有被获取就返回非 0,否则返回 0。

被自旋锁保护的临界区一定不能调用任何能够引起睡眠和阻塞的 API 函数,否则的话会可能会导致死锁现象(不能带锁休眠)。因为自旋锁会禁止抢占,也就说当线程 A 得到锁以后会暂时禁止内核抢占,那既然禁止内核抢占自己又休眠了,粗俗的形容就是“占着茅坑不拉屎”,自己休眠了又没有释放锁就导致死锁。

2.3.1.1 自旋锁和中断相关

中断里面访问临界资源,也是可以使用自旋锁的,但是在获取锁之前一定要先禁止本地中断。

函数 描述
void spin_lock_irq(spinlock_t *lock) 禁止本地中断,并获取自旋锁。
void spin_unlock_irq(spinlock_t *lock) 激活本地中断,并释放自旋锁。
void spin_lock_irqsave(spinlock_t *lock,unsigned long flags) 保存中断状态,禁止本地中断,并获取自旋锁。
void spin_unlock_irqrestore(spinlock_t*lock, unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放自旋锁

如下图就是没有禁止本地中断导致死锁的例子:

image

线程 A 先运行,并且获取到了 lock 这个锁,当线程 A 运行 functionA 函 数的时候中断发生了,中断抢走了 CPU 使用权。右边的中断服务函数也要获取 lock 这个锁, 但是这个锁被线程 A 占有着,中断就会一直自旋,等待锁有效。但是在中断服务函数执行完之前,线程 A 是不可能执行的,线程 A 说“你先放手”,中断说“你先放手”,场面就这么僵持着, 死锁发生!

使用 spin_lock_irq/spin_unlock_irq 的时候需要用户能够确定加锁之前的中断状态,但实际上我们是很难确定某个时刻的中断状态,因此不推荐使用 spin_lock_irq/spin_unlock_irq。建议使用 spin_lock_irqsave/spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。一般在线程中使用 spin_lock_irqsave/ spin_unlock_irqrestore,在中断中使用 spin_lock/spin_unlock,例如下面:

DEFINE_SPINLOCK(lock);
/* 线程 A */
void functionA (){
	unsigned long flags; /* 中断状态 */
	spin_lock_irqsave(&lock, flags); /* 获取锁 */
	/* 临界区 */
	spin_unlock_irqrestore(&lock, flags); /* 释放锁 */
}

 /* 中断服务函数 */
void irq() {
	spin_lock(&lock); /* 获取锁 */
	/* 临界区 */
	spin_unlock(&lock); /* 释放锁 */
}

有人说为什么中断服务程序不去使用spin_lock_irqsave呢? 难道不需要去禁止中断吗?

因为GIC中断总入口已经帮我们做了禁止中断。调用了local_irq_disable(),详见设备驱动-10.中断子系统-1异常中断引入 - fuzidage - 博客园 (cnblogs.com)

image

如果下半部(BH)也会竞争共享资源,要在下半部里面使用自旋锁:

函数 描述
void spin_lock_bh(spinlock_t *lock) 关闭下半部,并获取自旋锁
void spin_unlock_bh(spinlock_t *lock) 打开下半部,并释放自旋锁

2.3.2 读写自旋锁

读写自旋锁为读和写操作提供了不同的锁,一次只能允许一个写操作,也就是只能一个线程持有写锁,而且不能进行读操作。但是当没有写操作的时候允许一个或多个线程持有读锁, 可以进行并发的读操作。Linux 内核使用 rwlock_t 结构体表示读写锁,结构体定义如下(删除了 条件编译):

typedef struct {
 	arch_rwlock_t raw_lock;
} rwlock_t;

使用场景:

现在有个学生信息表,此表存放着学生的年龄、家庭住址、班级等信息,此表可以随时被 修改和读取,那么必须要对其进行保护,如果我们现在使用自旋锁对其进行 保护。每次只能一个读操作或者写操作,但是,实际上此表是可以并发读取的。只需要保证在 修改此表的时候没人读取,或者在其他人读取此表的时候没有人修改此表就行了。也就是此表 的读和写不能同时进行,但是可以多人并发的读取此表。像这样,当某个数据结构符合读/写或 生产者/消费者模型的时候就可以使用读写自旋锁。

函数 描述
DEFINE_RWLOCK(rwlock_t lock) 定义并初始化读写锁
void rwlock_init(rwlock_t *lock) 初始化读写锁。
读操作
void read_lock(rwlock_t *lock) 获取读锁。
void read_unlock(rwlock_t *lock) 释放读锁。
void read_lock_irq(rwlock_t *lock) 禁止本地中断,并且获取读锁。
void read_unlock_irq(rwlock_t *lock) 打开本地中断,并且释放读锁。
void read_lock_irqsave(rwlock_t *lock, unsigned long flags) 保存中断状态,禁止本地中断,并获取读锁。
void read_unlock_irqrestore(rwlock_t *lock,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放读锁。
void read_lock_bh(rwlock_t *lock) 关闭下半部,并获取读锁。
void read_unlock_bh(rwlock_t *lock) 打开下半部,并释放读锁。
写操作
void write_lock(rwlock_t *lock) 获取写锁。
void write_unlock(rwlock_t *lock) 释放写锁。
void write_lock_irq(rwlock_t *lock) 禁止本地中断,并且获取写锁。
void write_unlock_irq(rwlock_t *lock) 打开本地中断,并且释放写锁。
void write_lock_irqsave(rwlock_t *lock,unsigned long flags) 保存中断状态,禁止本地中断,并获取写锁
void write_unlock_irqrestore(rwlock_t *lock,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放读锁。
void write_lock_bh(rwlock_t *lock) 关闭下半部,并获取读锁。
void write_unlock_bh(rwlock_t *lock) 打开下半部,并释放读锁。

2.3.3 顺序锁

顺序锁在读写锁的基础上衍生而来的,使用读写锁的时候读操作和写操作不能同时进行。使用顺序锁的话可以允许在写的时候进行读操作,也就是实现同时读写,但是不允许同时进行并发的写操作。

typedef struct {
 		struct seqcount seqcount;
 		spinlock_t lock;
} seqlock_t;
函数 描述
DEFINE_SEQLOCK(seqlock_t sl) 定义并初始化顺序锁
void seqlock_ini seqlock_t *sl) 初始化顺序锁。
void write_seqlock(seqlock_t *sl) 获取写顺序锁。
void write_sequnlock(seqlock_t *sl) 释放写顺序锁。
void write_seqlock_irq(seqlock_t *sl) 禁止本地中断,并且获取写顺序锁
void write_sequnlock_irq(seqlock_t *sl) 打开本地中断,并且释放写顺序锁。
void write_seqlock_irqsave(seqlock_t *sl,unsigned long flags) 保存中断状态,禁止本地中断,并获取写顺序锁。
void write_sequnlock_irqrestore(seqlock_t *sl,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放写顺序锁。
void write_seqlock_bh(seqlock_t *sl) 关闭下半部,并获取写读锁。
void write_sequnlock_bh(seqlock_t *sl) 打开下半部,并释放写读锁。
unsigned read_seqbegin(const seqlock_t *sl) 读单元访问共享资源的时候调用此函数,此函数会返回顺序锁的顺序号。
unsigned read_seqretry(const seqlock_t *sl,unsigned start) 读结束以后调用此函数检查在读的过程中有没有对资源进行写操作,如果有的话就要重读

2.4 信号量

相比于自旋锁,信号量可以使线程进入休眠状态,比如 A 与 B、C 合租了一套房子,这个 房子只有一个厕所,一次只能一个人使用。某一天早上 A 去上厕所了,过了一会 B 也想用厕 所,因为 A 在厕所里面,所以 B 只能等到 A 用来了才能进去。B 要么就一直在厕所门口等着, 等 A 出来,这个时候就相当于自旋锁。B 也可以告诉 A,让 A 出来以后通知他一下,然后 B 继 续回房间睡觉,这个时候相当于信号量。可以看出,使用信号量会提高处理器的使用效率,毕 竟不用一直傻乎乎的在那里“自旋”等待。但是,信号量的开销要比自旋锁大,因为信号量使 线程进入休眠状态以后会切换线程,切换线程就会有开销。

信号量的特点:

适用于那些占用资源比较久的场合,如线程同步。

因此信号量等待不能用于中断中,因为中断不能休眠。

2.4.1 信号量 API

struct semaphore {
	 raw_spinlock_t lock;
	 unsigned int count;
	 struct list_head wait_list;
};
函数 描述
DEFINE_SEAMPHORE(name) 定义一个信号量,并且设置信号量的值为 1。
void sema_init(struct semaphore *sem, int val) 初始化信号量 sem,设置信号量值为 val。
void down(struct semaphore *sem) 获取信号量,因为会导致休眠,因此不能在中断中使用。
int down_trylock(struct semaphore *sem); 尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠。
int down_interruptible(struct semaphore *sem) 获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的。
void up(struct semaphore *sem) 释放信号量
struct semaphore sem; /* 定义信号量 */
sema_init(&sem, 1); /* 初始化信号量 */
threadA(){
    down(&sem); /* 申请信号量 */
}
theadB(){
    up(&sem); /* 释放信号量 */
}

2.5 互斥锁

将信号量的值设置为 1 就可以使用信号量进行互斥访问了,虽然可以通过信号量实现互斥,但是 Linux 提供了一个比信号量更专业的机制来进行互斥,它就是互斥体—mutex。互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥锁。

struct mutex {
	 /* 1: unlocked, 0: locked, negative: locked, possible waiters */
 	atomic_t count;
	 spinlock_t wait_lock;
};

使用 mutex 的时候要注意如下几点:

1. mutex 可以导致休眠,因此不能在中断中使用 mutex,中断中只能使用自旋锁。

2. 和信号量一样,mutex 保护的临界区可以调用引起阻塞的 API 函数。

3. 因为一次只有一个线程可以持有 mutex,因此,必须由 mutex 的持有者释放 mutex。并且 mutex 不能递归上锁和解锁。

2.5.1 互斥锁API

函数 描述
DEFINE_MUTEX(name) 定义并初始化一个 mutex 变量。
void mutex_init(mutex *lock) 初始化 mutex。
void mutex_lock(struct mutex *lock) 获取 mutex,也就是给 mutex 上锁。如果获取不到就进休眠。
void mutex_unlock(struct mutex *lock) 释放 mutex,也就给 mutex 解锁。
int mutex_trylock(struct mutex *lock) 尝试获取 mutex,如果成功就返回 1,如果失败就返回 0。
int mutex_is_locked(struct mutex *lock) 判断 mutex 是否被获取,如果是的话就返回1,否则返回 0。
int mutex_lock_interruptible(struct mutex *lock) 使用此函数获取信号量失败进入休眠以后可以被信号打断
struct mutex lock; /* 定义一个互斥体 */
mutex_init(&lock); /* 初始化互斥体 */
mutex_lock(&lock); /* 上锁 */
/* 临界区 */
mutex_unlock(&lock); /* 解锁 */

2.6 SMP 架构下percpu变量机制

随着 SMP(对称多处理器架构) 的发展,程序确实是在并发执行,也为数据同步带来了更大的挑战。

在 SMP 架构中,每个 CPU 都拥有自己的高速缓存,通常,L1 cache 是 CPU 独占的,每个 CPU 都有一份,它的速度自然是最快的,而 L2 cache 通常是所有 CPU 共享的高速缓存,当 CPU 载入一个全局数据时,会逐级地查看高速缓存,如果没有在缓存中命中,就从内存中载入,并加入到各级 cache 中,当下次需要读取这个值时,直接读取 cache 。

假如进程在 CPU0 上操作一个共享变量,在某个时刻进程被调度到 CPU1 上执行时,CPU0 和 CPU1 上的 共享变量值就不同。

percpu机制:为了避免多个 CPU 对全局数据的竞争而导致的性能损失,percpu 直接为每个 CPU 生成一份独有的数据备份,每个数据备份占用独立的内存,CPU 不应该修改不属于自己的这部分数据,这样就避免了多 CPU 对全局数据的竞争问题。

2.6.0 percpu 变量的存储格式

对于普通的变量而言,变量的加载地址就是程序中使用的该变量的地址,可以使用取址符获取变量地址。

percpu 变量:percpu 变量的加载地址是不允许访问的,取而代之的是对于 n 核的 SMP 架构系统,内核将会为每一个 CPU 另行开辟一片内存,将该 percpu 变量复制 n 份分别放在每个 CPU 独有的内存区中。

image

也就是说,为 percpu 分配内存的时候,原始的变量 var 与 percpu 变量内存偏移值 offset 被保存了下来,每个 CPU 对应的 percpu 变量地址为 (&var + offset),当然真实情况要比这个复杂,将在后文中讲解。

2.6.1 percpu变量使用场景

  1. 计数器和统计信息:如果你有计数器或者统计信息需要在每个CPU上独立维护,那么percpu变量将会非常有用。
  2. 异步任务处理:通过percpu变量来维护异步任务的上下文信息。

2.6.2 percpu 变量的定义

DEFINE_PER_CPU(type, name);//静态定义一个 percpu变量,type 是变量类型,name 是变量名

type __percpu *ptr alloc_percpu(type);//动态分配一个percpu变量ptr,这只是一个原始数据,真正被使用的数据被 copy 成 n(n=CPU数量) 份分别保存在每个 CPU 独占的地址空间中,在访问 percpu 变量时就是对每个副本进行访问。

2.6.3 percpu 变量的读写

静态定义的读写

DEFINE_PER_CPU(int, val)=0;

// 获取当前CPU的percpu变量的值
int value = per_cpu(val, smp_processor_id());
// 遍历所有CPU,并打印percpu变量的值
for_each_possible_cpu(cpu) {
    value = per_cpu(val, cpu);
    printk(KERN_INFO "my_percpu_var on CPU%d is %d\n", cpu, value);
}



/*put_cpu_var 和 get_cpu_var 是成对出现的,因为这段期间内静止内核抢占,
 *它们之间的代码不宜执行太长时间。
*/
int *pint = &get_cpu_var(val);//获取当前 CPU 的 percpu 变量的地址进行操作
*pint++;
put_cpu_var(val);

为什么在调用 get_cpu_var 时,第一步是禁止内核抢占呢?

想想这样一个场景,进程 A 在 CPU0 上执行,读取了 percpu 变量到寄存器中,这时候进程被高优先级进程抢占,继续执行的时候可能被转移到 CPU1 上执行,这时候在 CPU1 执行的代码操作的仍旧是 CPU0 上的 percpu 变量,这显然是错误的。

动态定义的读写

int *pint = alloc_percpu(int);
...
int *p = per_cpu_ptr(pint,raw_smp_processor_id());//与静态变量的操作接口不一样,这个接口允许指定 CPU ,不再是只能获取当前 CPU 的值
(*p)++;

raw_smp_processor_id() 函数返回当前 CPU num,这个示例也就是操作当前 CPU 的 percpu 变量,这个接口并不需要禁止内核抢占,因为不管进程被切换到哪个 CPU 上执行,它所操作的都是第二个参数提供的 CPU。

2.6.4 percpu 变量实现原理

#define DEFINE_PER_CPU(type, name)                  \
    DEFINE_PER_CPU_SECTION(type, name, "")

#define DEFINE_PER_CPU_SECTION(type, name, sec)             \
    __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES            \
    __typeof__(type) name

#define __PCPU_ATTRS(sec)                       \
    __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \
    PER_CPU_ATTRIBUTES

#ifdef CONFIG_SMP
    #define PER_CPU_BASE_SECTION ".data..percpu"
#else
    #define PER_CPU_BASE_SECTION ".data"
#endif

展开:

#ifdef CONFIG_SMP
#define DEFINE_PER_CPU(type, name)                  \
    __percpu __attribute__((section(".data..percpu"))) type name;  \ 
#else   \
    __percpu __attribute__((section(".data"))) type name; \
#endif
  1. 在 SMP 架构下,被定义的 percpu 变量在编译后放在 .data..percpu 这个 section 中;
  2. 在单核系统中, percpu 变量被放在.data也就是数据段中;

2.6.4.1 get_cpu_var实现

#define get_cpu_var(var)                    \
(*({                                        \
    preempt_disable();                      \
    this_cpu_ptr(&var);                     \
}))

#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)

#define raw_cpu_ptr(ptr)                        \
({                                              \
    __verify_pcpu_ptr(ptr);                     \
    arch_raw_cpu_ptr(ptr);                      \
})

首先,preempt_disable 禁用内核抢占,然后使用 this_cpu_ptr 接口获取当前 cpu 上对应的 var 变量地址。

get_cpu_var展开:可以看到就能准确获取当前cpu的val地址。

#define get_cpu_var(var)                    \
(*({                                        \
    preempt_disable();                      \
    &var + __per_cpu_offset[raw_smp_processor_id()]  \
}))

使用完变量之后记得调用 put_cpu_var 以使能内核抢占功能,恢复系统状态。

3 linux内核下不同同步机制的适用场景

  1. 原子操作:主要用于进行原子性的读写操作,适用于计数器等场景。
  2. 自旋锁:用于短时间内锁定互斥资源,适用于锁持有时间短的场景。
  3. 读写锁:用于提供读模式和写模式下的锁操作,适用于读多写少的场景。
  4. MUTEX:类似自旋锁,但是可以导致调用线程睡眠,适用于锁持有时间较长的场景。(允许休眠)
  5. 信号量:用于实现互斥和同步,适用于保护临界区和控制访问频率。但是可以导致调用线程睡眠,适用于锁持有时间较长的场景。(允许休眠)

标签:percpu,int,lock,void,并发,内核,linux,CPU,atomic
From: https://www.cnblogs.com/fuzidage/p/18301805

相关文章

  • linux:信号
    信号的简介信号(signal):在Linux系统中,信号是一种进程间通信(IPC)的机制,主要用于通知进程发生了某些异常或特殊情况。信号可以由硬件异常(如除零错误)、软件异常(如非法内存访问)或来自其他进程的通知(如终止请求)触发。Linux支持多种信号,每种信号都有其特定的用途和默认行为。信号的类......
  • Linux 下 C 语言编程概述
    来自......
  • Linux系统编程-线程同步详解
    线程同步是指多个线程协调工作,以便在共享资源的访问和操作过程中保持数据一致性和正确性。在多线程环境中,线程是并发执行的,因此如果多个线程同时访问和修改共享资源,可能会导致数据不一致、竞态条件(racecondition)等问题。线程同步通过协调线程的执行顺序和共享资源的访问来避免......
  • Linux可执行程序启动流程
    进程是如何启动的?进程启动过程示例代码#include<stdio.h>intmain(){printf("hello,world\r\n");return0;}启动两个终端,使用strace命令跟踪进程启动过程strace-f-s655000-i-T-ooutput.txt-p19510各个选项参考strace的man手册-f跟......
  • Linux Vim最全面的教程
    前言Vim是一款强大的文本编辑器,广泛用于Linux系统中。其强大的功能和灵活的配置使得它成为许多开发者和系统管理员的首选工具。本文旨在提供一份最全面的Vim教程,帮助你从基础到高级,全面掌握这款编辑器。目录Vim简介Vim的安装基本操作常用命令高级功能配置Vim插件管理实用......
  • Java并发编程中的锁机制详解
    Java并发编程中的锁机制详解大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在Java并发编程中,锁机制是保证线程安全的重要手段。锁的作用是确保同一时刻只有一个线程能够访问被锁保护的资源,从而避免数据不一致和并发冲突。本文将详细介绍Java并发编程中的......
  • Java并发编程 - ReentrantLock
    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、ReentrantLock是什么?二、基本使用2.1基本语法2.2经典案例-取款问题2.2.1不加锁情况2.2.2使用ReentrantLock三、特性3.1可重入3.2可打断3.2.1无竞争3.2.2有竞争-获取不到锁3.3.3......
  • Linux常用选项和指令
    目录Linux指令使用注意用户创建与删除ls指令ls指令介绍ls常见选项ls选项组合使用pwd指令Linux文件系统结构多叉树结构文件系统介绍多叉树结构文件系统的特点cd指令绝对路径相对路径cd指令介绍家户目录最近访问的目录touch指令​编辑mkdir指令mkdir指令介绍......
  • linux系统查看父子进程
    ①查找特定进程的父进程ps-opid,ppid,cmd-p1234查找进程PID为1234的父进程②显示所有进程的树状结构pstree③显示特定进程及其父进程的树状结构pstree-s1234④启动top后,按下c键可以查看完整命令,按下f键进入字段管理界面,然后选择PPID字段。⑤启......
  • linux配置用户多次登录终端失败被锁定机制
    用户登录Linux系统终端,若多次输入密码错误失败将会被锁定,被锁定期间将不能再登录系统。该机制是由于系统应用了Linux-PAM(PluggableAuthenticationModulesforLinux)可插拔认证模,是一套适用于Linux的身份验证共享库系统。设置修改/关闭锁定机制步骤:1、在终端界面输入命......