Java内存模型
概述
多任务处理在现代计算机操作系统中几乎已是一项必备的功能了。在许多场景下,让计算机同时去做几件事情,不仅是因为计算机的运算能力强大了,还有一个很重要的原因是计算机的运算速度与它的存储和通信子系统的速度差距太大,大量的时间都花费在磁盘I/O、网络通信或者数据库访问上。
如果不希望处理器在大部分时间里都处于等待其他资源的空闲状态,就必须使用一些手段去把处理器的运算能力“压榨”出来,否则就会造成很大的性能浪费,而让计算机同时处理几项任务则是最容易想到,也被证明是非常有效的“压榨”手段。
除了充分利用计算机处理器的能力外,一个服务端要同时对多个客户端提供服务,则是另一个更具体的并发应用场景。衡量一个服务性能的高低好坏,每秒事务处理数(Transactions Per Second,TPS)是重要的指标之一,它代表着一秒内服务端平均能响应的请求总数,而TPS值与程序的并发能力又有非常密切的关系。对于计算量相同的任务,程序线程并发协调得越有条不紊,效率自然就会越高;反之,线程之间频繁争用数据,互相阻塞甚至死锁,将会大大降低程序的并发能力。
服务端的应用是Java语言最擅长的领域之一,这个领域的应用占了Java应用中最大的一块份额[1],不过如何写好并发应用程序却又是服务端程序开发的难点之一,处理好并发方面的问题通常需要更多的编码经验来支持。幸好Java语言和虚拟机提供了许多工具,把并发编程的门槛降低了不少。各种中间件服务器、各类框架也都努力地替程序员隐藏尽可能多的线程并发细节,使得程序员在编码时能更关注业务逻辑,而不是花费大部分时间去关注此服务会同时被多少人调用、如何处理数据争用、协调硬件资源。但是无论语言、中间件和框架再如何先进,开发人员都不应期望它们能独立完成所有并发处理的事情,了解并发的内幕仍然是成为一个高级程序员不可缺少的课程。
“高效并发”是本书讲解Java虚拟机的最后一个部分,将会向读者介绍虚拟机如何实现多线程、多线程之间由于共享和竞争数据而导致的一系列问题及解决方案。
[1] 必须以代码的总体规模来衡量,服务端应用不能与JavaCard、移动终端这些领域去比绝对数量。
12.2 硬件的效率与一致性
在正式讲解Java虚拟机并发相关的知识之前,我们先花费一点时间去了解一下物理计算机中的并发问题。物理机遇到的并发问题与虚拟机中的情况有很多相似之处,物理机对并发的处理方案对虚拟机的实现也有相当大的参考意义。
“让计算机并发执行若干个运算任务”与“更充分地利用计算机处理器的效能”之间的因果关系,看起来理所当然,实际上它们之间的关系并没有想象中那么简单,其中一个重要的复杂性的来源是绝大多数的运算任务都不可能只靠处理器“计算”就能完成。处理器至少要与内存交互,如读取运算数据、存储运算结果等,这个I/O操作就是很难消除的(无法仅靠寄存器来完成所有运算任务)。由于计算机的存储设备与处理器的运算速度有着几个数量级的差距,所以现代计算机系统都不得不加入一层或多层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。
基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但是也为计算机系统带来更高的复杂度,它引入了一个新的问题:缓存一致性(Cache Coherence)。在多路处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(Main Memory),这种系统称为共享内存多核系统(Shared Memory Multiprocessors System),如图12-1所示。当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致。如果真的发生这种情况,那同步回到主内存时该以谁的缓存数据为准呢?为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI(Illinois Protocol)、MOSI、
Synapse、Firefly及Dragon Protocol等。从本章开始,我们将会频繁见到“内存模型”一词,它可以理解为在特定的操作协议下,对特定的内存或高速缓存进行读写访问的过程抽象。不同架构的物理机器可以拥有不一样的内存模型,而Java虚拟机也有自己的内存模型,并且与这里介绍的内存访问操作及硬件的缓存访问操作具有高度的可类比性。
除了增加高速缓存之外,为了使处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致,因此如果存在一个计算任务依赖另外一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有指令重排序(Instruction Reorder)优化。
12.3 Java内存模型
《Java虚拟机规范》[1]中曾试图定义一种“Java内存模型”[2](Java Memory Model,JMM)来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如C和C++等)直接使用物理硬件和操作系统的内存模型。因此,由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,所以在某些场景下必须针对不同的平台来编写程序。
定义Java内存模型并非一件容易的事情,这个模型必须定义得足够严谨,才能让Java的并发内存访问操作不会产生歧义;但是也必须定义得足够宽松,使得虚拟机的实现能有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存和指令集中某些特有的指令)来获取更好的执行速度。经过长时间的验证和修补,直至JDK 5(实现了JSR-133[3])发布后,Java内存模型才终于成熟、完善起来了。
[1] 在《Java虚拟机规范》的第2版及之前,专门有一章“Threads and Locks”来描述内存模型,后来由于这部分内容难以把握宽紧限度,被反复修正更新,从第3版(Java SE 7版)开始索性就被移除出规范,独立以JSR形式维护。
[2] 本书中的Java内存模型都特指目前正在使用的,在JDK 1.2之后建立起来并在JDK 5中完善过的内存模型。
[3] JSR-133:Java Memory Model and Thread Specification Revision(Java内存模型和线程规范修订)。
12.3.1 主内存与工作内存
Java内存模型的主要目的是定义程序中各种变量的访问规则,即关注在虚拟机中把变量值存储到内存和从内存中取出变量值
这样的底层细节。
此处的变量(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,因为后者是线程私有的[1],不会被共享,自然就不会存在竞争问题。为了获得更好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器是否要进行调整代码执行顺序这类优化措施。
Java内存模型规定了所有的变量都存储在主内存
(Main Memory)中(此处的主内存与介绍物理硬件时提到的主内存名字一样,两者也可以类比,但物理上它仅是虚拟机内存的一部分)。
每条线程
还有自己的工作内存
(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用的变量的主内存副本
[2],线程对变量
的所有操作(读取、赋值等)都必须在工作内存
中进行,而不能直接读写主内存
中的数据[3]。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图12-2所示,注意与图12-1进行对比。
这里所讲的主内存、工作内存与第2章所讲的Java内存区域中的Java堆、栈、方法区等并不是同一个层次的对内存的划分,这两者基本上是没有任何关系的。如果两者一定要勉强对应起来,那么从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分[4],而工作内存则对应于虚拟机栈中的部分区域。从更基础的层次上说,主内存直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(或者是硬件、操作系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问的是工作内存。
[1] 此处请读者注意区分概念:如果局部变量是一个reference类型,它引用的对象在Java堆中可被各个线程共享,但是reference本身在Java栈的局部变量表中是线程私有的。
[2] 有部分读者会对这段描述中的“副本”提出疑问,如“假设线程中访问一个10MB大小的对象,也会把这10MB的内存复制一份出来吗?”,事实上并不会如此,这个对象的引用、对象中某个在线程访问到的字段是有可能被复制的,但不会有虚拟机把整个对象复制一次。
[3] 根据《Java虚拟机规范》的约定,volatile变量依然有工作内存的拷贝,但是由于它特殊的操作顺序性规定(后文会讲到),所以看起来如同直接在主内存中读写访问一般,因此这里的描述对于volatile也并不存在例外。
[4] 除了实例数据,Java堆还保存了对象的其他信息,对于HotSpot虚拟机来讲,有Mark Word(存储对象哈希码、GC标志、GC年龄、同步锁等信息)、Klass Point(指向存储类型元数据的指针)及一些用于字节对齐补白的填充数据(如果实例数据刚好满足8字节对齐,则可以不存在补白)。
内存间交互操作
关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存
、如何从工作内存同步回主内存
这一类的实现细节,Java内存模型中定义了以下8种操作来完成。
Java虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许有例外,这个问题在12.3.4节会专门讨论)[1]。
lock
(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。unlock
(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。read
(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。load
(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。use
(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。assign
(赋值):作用于工作内存的变量,它把一个从执行引擎接收的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。store
(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。write
(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
如果要把一个变量从主内存拷贝到工作内存,那就要按顺序执行read和load
操作,如果要把变量从工作内存同步回主内存,就要按顺序执行store和write
操作。注意,Java内存模型只要求上述两个操作必须按顺序执行,但不要求是连续执行
。也就是说read与load之间、store与write之间是可插入其他指令的,如对主内存中的变量a、b进行访问时,一种可能出现的顺序是read a、read b、load b、load a。
除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:
- 不允许
read和load
、store和write
操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者工作内存发起回写了但主内存不接受的情况出现。 不允许一个线程丢弃
它最近的assign
操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。- 不允许一个线程
无原因
地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存
中。 - 一个新的变量
只能在主内存中“诞生”
,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说就是对一个变量实施use、store操作之前,必须先执行assign和load操作。 - 一个变量在同一个时刻只允许一条线程对其进行lock操作,但
lock操作可以被同一条线程重复执行多次
,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。 - 如果对一个变量执行
lock操作,那将会清空工作内存中此变量的值
,在执行引擎使用这个变量前,需要重新执行load或assign操作以初始化变量的值。 - 如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量。
- 对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)。
这8种内存访问操作以及上述规则限定,再加上稍后会介绍的专门针对volatile的一些特殊规定,就已经能准确地描述出Java程序中哪些内存访问操作在并发下才是安全的。这种定义相当严谨,但也是极为烦琐,实践起来更是无比麻烦。可能部分读者阅读到这里已经对多线程开发产生恐惧感了,后来Java设计团队大概也意识到了这个问题,将Java内存模型的操作简化为read、write、lock和unlock四种,但这只是语言描述上的等价化简,Java内存模型的基础设计并未改变,即使是这四操作种,对于普通用户来说阅读使用起来仍然并不方便。不过读者对此无须过分担忧,除了进行虚拟机开发的团队外,大概没有其他开发人员会以这种方式来思考并发问题,我们只需要理解Java内存模型的定义即可。12.3.6节将介绍这种定义的一个等效判断原则——先行发生原则,用来确定一个操作在并发环境下是否安全的。
[1] 基于理解难度和严谨性考虑,最新的JSR-133文档中,已经放弃了采用这8种操作去定义Java内存模型的访问协议,缩减为4种(仅是描述方式改变了,Java内存模型并没有改变)。
对于volatile型变量的特殊规则
volatile 可见性和有序性
关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制,但是它并不容易被正确、完整地理解,以至于许多程序员都习惯去避免使用它,遇到需要处理多线程数据竞争问题的时候一律使用synchronized来进行同步。了解volatile变量的语义对后面理解多线程操作的其他特性很有意义,在本节中我们将多花费一些篇幅介绍volatile到底意味着什么。
Java内存模型为volatile专门定义了一些特殊的访问规则,在介绍这些比较拗口的规则定义之前,先用一些不那么正式,但通俗易懂的语言来介绍一下这个关键字的作用。
当一个变量被定义成volatile之后,它将具备两项特性:
第一项是保证此变量对所有线程的可见性
,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量并不能做到这一点,普通变量的值在线程间传递时均需要通过主内存来完成。比如,线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再对主内存进行读取操作,新变量值才会对线程B可见。
关于volatile变量的可见性,经常会被开发人员误解,他们会误以为下面的描述是正确的:“volatile 变量对所有线程是立即可见的,对volatile变量所有的写操作都能立刻反映到其他线程之中。换句话说,volatile变量在各个线程中是一致的,所以基于volatile变量的运算在并发下是线程安全的”。这句话的论据部分并没有错,但是由其论据并不能得出“基于volatile变量的运算在并发下是线程安全的”这样的结论。volatile变量在各个线程的工作内存中是不存在一致性问题的(从物理存储的角度看,各个线程的工作内存中volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不一致的情况,因此可以认为不存在一致性问题),但是Java里面的运算操作符并非原子操作,这导致volatile变量的运算在并发下一样是不安全的,我们可以通过一段简单的演示来说明原因,请看代码清单12-1中演示的例子。
代码清单12-1 volatile的运算[1]
/**
* volatile变量自增运算测试
*
* @author zzm
*/
public class VolatileTest {
public static volatile int race = 0;
public static void increase() {
race++;
}
private static final int THREADS_COUNT = 20;
public static void main(String[] args) {
Thread[] threads = new Thread[THREADS_COUNT];
for (int i = 0; i < THREADS_COUNT; i++) {
threads[i] = new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10000; i++) {
increase();
}
}
});
threads[i].start();
}
// 等待所有累加线程都结束
while (Thread.activeCount() > 1)
Thread.yield();
System.out.println(race);
}
}
这段代码发起了20个线程,每个线程对race变量进行10000次自增操作,如果这段代码能够正确并发的话,最后输出的结果应该是200000。读者运行完这段代码之后,并不会获得期望的结果,而且会发现每次运行程序,输出的结果都不一样,都是一个小于200000的数字。这是为什么呢?
问题就出在自增运算“race++”之中,我们用Javap反编译这段代码后会得到代码清单12-2所示,发现只有一行代码的increase()方法在Class文件中是由4条字节码指令构成(return指令不是由race++产生的,这条指令可以不计算),从字节码层面上已经很容易分析出并发失败的原因了:当getstatic指令把race的值取到操作栈顶时,volatile关键字保证了race的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把race的值改变了,而操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可能把较小的race值同步回主内存之中。
代码清单12-2 VolatileTest的字节码
public static void increase();
Code:
Stack=2, Locals=0, Args_size=0
0: getstatic #13; //Field race:I
3: iconst_1
4: iadd
5: putstatic #13; //Field race:I
8: return
LineNumberTable:
line 14: 0
line 15: 8
实事求是地说,笔者使用字节码来分析并发问题仍然是不严谨的,因为即使编译出来只有一条字节码指令,也并不意味执行这条指令就是一个原子操作。一条字节码指令在解释执行时,解释器要运行许多行代码才能实现它的语义。如果是编译执行,一条字节码指令也可能转化成若干条本地机器码指令。此处使用-XX:+PrintAssembly参数输出反汇编来分析才会更加严谨一些,但是考虑到读者阅读的方便性,并且字节码已经能很好地说明问题,所以此处使用字节码来解释。
由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用synchronized、java.util.concurrent中的锁或原子类)来保证原子性
- 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。
- 变量不需要与其他的状态变量共同参与不变约束。
而在像代码清单12-3所示的这类场景中就很适合使用volatile变量来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来。
代码清单12-3 volatile的使用场景
volatile boolean shutdownRequested;
public void shutdown() {
shutdownRequested = true;
}
public void doWork() {
while (!shutdownRequested) {
// 代码的业务逻辑
}
}
使用volatile变量的第二个语义是禁止指令重排序优化
,普通的变量仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在同一个线程的方法执行过程中无法感知到这点,这就是Java内存模型中描述的所谓“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics)。
上面描述仍然比较拗口难明,我们还是继续通过一个例子来看看为何指令重排序会干扰程序的并发执行。演示程序如代码清单12-4所示。
代码清单12-4 指令重排序
Map configOptions;
char[] configText;
// 此变量必须定义为volatile
volatile boolean initialized = false;
// 假设以下代码在线程A中执行
// 模拟读取配置信息,当读取完成后
// 将initialized设置为true,通知其他线程配置可用
configOptions = new HashMap();
configText = readConfigFile(fileName);
processConfigOptions(configText, configOptions);
initialized = true;
// 假设以下代码在线程B中执行
// 等待initialized为true,代表线程A已经把配置信息初始化完成
while (!initialized) {
sleep();
}
// 使用线程A中初始化好的配置信息
doSomethingWithConfig();
代码清单12-4中所示的程序是一段伪代码,其中描述的场景是开发中常见配置读取过程,只是我们在处理配置文件时一般不会出现并发,所以没有察觉这会有问题。读者试想一下,如果定义initialized变量时没有使用volatile修饰,就可能会由于指令重排序的优化,导致位于线程A中最后一条代码“initialized=true”被提前执行(这里虽然使用Java作为伪代码,但所指的重排序优化是机器级的优化操作,提前执行是指这条语句对应的汇编代码被提前执行),这样在线程B中使用配置信息的代码就可能出现错误,而volatile关键字则可以避免此类情况的发生[2]。
指令重排序是并发编程中最容易导致开发人员产生疑惑的地方之一,除了上面伪代码的例子之外,笔者再举一个可以实际操作运行的例子来分析volatile关键字是如何禁止指令重排序优化的。
代码清单12-5所示是一段标准的双锁检测(Double Check Lock,DCL)单例[3]代码,可以观察加入volatile和未加入volatile关键字时所生成的汇编代码的差别(如何获得即时编译的汇编代码?请参考第4章关于HSDIS插件的介绍)。
代码清单12-5 DCL单例模式
public class Singleton {
private volatile static Singleton instance;
public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
public static void main(String[] args) {
Singleton.getInstance();
}
}
编译后,这段代码对instance变量赋值的部分如代码清单12-6所示。
代码清单12-6 对instance变量赋值
0x01a3de0f: mov $0x3375cdb0,%esi ;...beb0cd75 33
; {oop('Singleton')}
0x01a3de14: mov %eax,0x150(%esi) ;...89865001 0000
0x01a3de1a: shr $0x9,%esi ;...c1ee09
0x01a3de1d: movb $0x0,0x1104800(%esi) ;...c6860048 100100
0x01a3de24: lock addl $0x0,(%esp) ;...f0830424 00
;*putstatic instance
; - Singleton::getInstance@24
通过对比发现,关键变化在于有volatile修饰的变量,赋值后(前面mov%eax,0x150(%esi)这句便是赋值操作)多执行了一个“lock addl$0x0,(%esp)”操作,这个操作的作用相当于一个内存屏障(Memory Barrier或Memory Fence,指重排序时不能把后面的指令重排序到内存屏障之前的位置,注意不要与第3章中介绍的垃圾收集器用于捕获变量访问的内存屏障互相混淆),只有一个处理器访问内存时,并不需要内存屏障;但如果有两个或更多处理器访问同一块内存,且其中有一个在观测另一个,就需要内存屏障来保证一致性了。
这句指令中的“addl$0x0,(%esp)”(把ESP寄存器的值加0)显然是一个空操作,之所以用这个空操作而不是空操作专用指令nop,是因为IA32手册规定lock前缀不允许配合nop指令使用。这里的关键在于lock前缀,查询IA32手册可知,它的作用是将本处理器的缓存写入了内存,该写入动作也会引起别的处理器或者别的内核无效化(Invalidate)其缓存,这种操作相当于对缓存中的变量做了一次前面介绍Java内存模式中所说的“store和write”操作[4]。所以通过这样一个空操作,可让前面volatile变量的修改对其他处理器立即可见。
那为何说它禁止指令重排序呢?从硬件架构上讲,指令重排序是指处理器采用了允许将多条指令不按程序规定的顺序分开发送给各个相应的电路单元进行处理。但并不是说指令任意重排,处理器必须能正确处理指令依赖情况保障程序能得出正确的执行结果。譬如指令1把地址A中的值加10,指令2把地址A中的值乘以2,指令3把地址B中的值减去3,这时指令1和指令2是有依赖的,它们之间的顺序不能重排——(A+10)2与A2+10显然不相等,但指令3可以重排到指令1、2之前或者中间,只要保证处理器执行后面依赖到A、B值的操作时能获取正确的A和B值即可。所以在同一个处理器中,重排序过的代码看起来依然是有序的。因此,lock addl$0x0,(%esp)指令把修改同步到内存时,意味着所有之前的操作都已经执行完成,这样便形成了“指令重排序无法越过内存屏障”的效果。
解决了volatile的语义问题,再来看看在众多保障并发安全的工具中选用volatile的意义——它能让我们的代码比使用其他的同步工具更快吗?在某些情况下,volatile的同步机制的性能确实要优于锁(使用synchronized关键字或java.util.concurrent包里面的锁),但是由于虚拟机对锁实行的许多消除和优化,使得我们很难确切地说volatile就会比synchronized快上多少。如果让volatile自己与自己比较,那可以确定一个原则:volatile变量读操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢上一些,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。不过即便如此,大多数场景下volatile的总开销仍然要比锁来得更低。
我们在volatile与锁中选择的唯一判断依据仅仅是volatile的语义能否满足使用场景的需求。
本节的最后,我们再回头来看看Java内存模型中对volatile变量定义的特殊规则的定义。假定T表示一个线程,V和W分别表示两个volatile型变量,那么在进行read、load、use、assign、store和write操作时需要满足如下规则:
-
只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作;并且,只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量V的use动作可以认为是和线程T对变量V的load、read动作相关联的,必须连续且一起出现。这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值,用于保证能看见其他线程对变量V所做的修改。
-
只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并且,只有当线程T对变量V执行的后一个动作是store的时候,线程T才能对变量V执行assign动作。线程T对变量V的assign动作可以认为是和线程T对变量V的store、write动作相关联的,必须连续且一起出现。这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改。
-
假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或store动作,假定动作P是和动作F相应的对变量V的read或write动作;与此类似,假定动作B是线程T对变量W实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q。这条规则要求volatile修饰的变量不会被指令重排序优化,从而保证代码的执行顺序与程序的顺序相同。
[1] 使用IntelliJ IDEA的读者请注意,在IDEA中运行这段程序,会由于IDE自动创建一条名为MonitorCtrl-Break的线程(从名字看应该是监控Ctrl-Break中断信号的)而导致while循环无法结束,改为大于2或者用Thread::join()方法代替可以解决该问题。
[2] volatile屏蔽指令重排序的语义在JDK 5中才被完全修复,此前的JDK中即使将变量声明为volatile也仍然不能完全避免重排序所导致的问题(主要是volatile变量前后的代码仍然存在重排序问题),这一点也是在JDK 5之前的Java中无法安全地使用DCL(双锁检测)来实现单例模式的原因。
[3] 双重锁定检查是一种在许多语言中都广泛流传的单例构造模式。
[4] Doug Lea列出了各种处理器架构下的内存屏障指令:http://gee.cs.oswego.edu/dl/jmm/cookbook.html。