首页 > 系统相关 >鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础

鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础

时间:2024-06-19 22:28:58浏览次数:28  
标签:__ 鸿蒙 TLB 源码 寄存器 进程 table newProcess 虚拟内存

ARM-CP15协处理器

ARM处理器使用协处理器15(CP15)的寄存器来控制cache、TCM和存储器管理。CP15的寄存器只能被MRC和MCR(Move to Coprocessor from ARM Register )指令访问,包含16个32位的寄存器,其编号为0~15。本篇重点讲解其中的 C7,C2,C13三个寄存器。

先拆解一段汇编代码

上来看段汇编,读懂内核源码不会点汇编是不行的 , 但不用发怵,没那么恐怖,由浅入深, 内核其实挺好玩的。见于 arm.h,里面全是这些玩意。

#define DSB __asm__ volatile("dsb" ::: "memory")
#define ISB __asm__ volatile("isb" ::: "memory")
#define DMB __asm__ volatile("dmb" ::: "memory")

STATIC INLINE VOID OsArmWriteBpiallis(UINT32 val)
{
    __asm__ volatile("mcr p15, 0, %0, c7,c1,6" ::"r"(val));
    __asm__ volatile("isb" ::: "memory");
}

这句汇编的指令字面意思是: 将ARM寄存器R0的数据写到CP15中编号为7的寄存器中,值由外面传进来。

例如 OsArmWriteBpiallis(0) 做了4个动作

1.把0值写入R0寄存器,注意这个寄存器是ARM即CPU的寄存器,::“r”(val) 意思代表向编译器声明,会修改R0寄存器的值,改之前提前打好招呼,都是绅士文明人。其实编译器的功能是非常强大的,不仅仅是大家普遍认为的只是编译代码的工具而已。

2.volatile的意思还是告诉编译器,不要去优化这段代码,原封不动的生成目标指令。

3.“isb” ::: “memory” 还是告诉编译器内存的内容可能被更改了,需要无效所有Cache,并访问实际的内容,而不是Cache!

4.再把R0的值写入到C7中,C7是CP15协处理器的寄存器。C7寄存器是负责什么的?对照下面的表。

CP15有哪些寄存器

这句话真正的意思是:关闭高速缓存和写缓存控制!,其他部分寄存器下面会讲,先有个大概印象。

mmu从哪里获取 page table 的信息?答案是: TTB

TTB寄存器(Translation table base)

参考上表可知TTB寄存器是CP15协处理器的C2寄存器,存页表的基地址,即一级映射描述符表的基地址。围绕着TTB鸿蒙提供了以下读取函数。简单说就是内核从外面不断的修改和读取寄存器值,而MMU只会直接通过硬件读取这个寄存器的值,以达到MMU获取不一样的页表进行进程虚拟地址和物理地址的转换。还记得吗?每个进程的页表都是独立的!

那么什么情况下会修改里面的值呢?换页表意味着 mmu在进行上下文的切换!还是直接看代码吧。

mmu上下文

只被LOS_ArchMmuContextSwitch调用。毫无疑问它是关键函数。

typedef struct ArchMmu {
    LosMux              mtx;            /**< arch mmu page table entry modification mutex lock */
    VADDR_T             *virtTtb;       /**< translation table base virtual addr */
    PADDR_T             physTtb;        /**< translation table base phys addr */
    UINT32              asid;           /**< TLB asid */
    LOS_DL_LIST         ptList;         /**< page table vm page list */
} LosArchMmu;

// mmu 上下文切换
VOID LOS_ArchMmuContextSwitch(LosArchMmu *archMmu)
{
    UINT32 ttbr;
    UINT32 ttbcr = OsArmReadTtbcr();//读取TTB寄存器的状态值
    if (archMmu) {
        ttbr = MMU_TTBRx_FLAGS | (archMmu->physTtb);//进程TTB物理地址值
        /* enable TTBR0 */
        ttbcr &= ~MMU_DESCRIPTOR_TTBCR_PD0;//使能TTBR0
    } else {
        ttbr = 0;
        /* disable TTBR0 */
        ttbcr |= MMU_DESCRIPTOR_TTBCR_PD0;
    }

    /* from armv7a arm B3.10.4, we should do synchronization changes of ASID and TTBR. */
    OsArmWriteContextidr(LOS_GetKVmSpace()->archMmu.asid);//这里先把asid切到内核空间的ID
    ISB;
    OsArmWriteTtbr0(ttbr);//通过r0寄存器将进程页面基址写入TTB
    ISB;
    OsArmWriteTtbcr(ttbcr);//写入TTB状态位
    ISB;
    if (archMmu) {
        OsArmWriteContextidr(archMmu->asid);//通过R0寄存器写入进程标识符至C13寄存器
        ISB;
    }
}
// c13 asid(Adress Space ID)进程标识符
STATIC INLINE VOID OsArmWriteContextidr(UINT32 val)
{
    __asm__ volatile("mcr p15, 0, %0, c13,c0,1" ::"r"(val));
    __asm__ volatile("isb" ::: "memory");
}

再看下那些地方会调用 LOS_ArchMmuContextSwitch,下图一目了然。

有四个地方会切换mmu上下文

第一:通过调度算法,被选中的进程的空间改变了,自然映射页表就跟着变了,需要切换mmu上下文,还是直接看代码。代码不是很多,就都贴出来了,都加了注释,不记得调度算法的可去系列篇中看 鸿蒙内核源码分析(调度机制篇),里面有详细的阐述。

//调度算法-进程切换
STATIC VOID OsSchedSwitchProcess(LosProcessCB *runProcess, LosProcessCB *newProcess)
{
    if (runProcess == newProcess) {
        return;
    }

#if (LOSCFG_KERNEL_SMP == YES)
    runProcess->processStatus = OS_PROCESS_RUNTASK_COUNT_DEC(runProcess->processStatus);
    newProcess->processStatus = OS_PROCESS_RUNTASK_COUNT_ADD(newProcess->processStatus);

    LOS_ASSERT(!(OS_PROCESS_GET_RUNTASK_COUNT(newProcess->processStatus) > LOSCFG_KERNEL_CORE_NUM));
    if (OS_PROCESS_GET_RUNTASK_COUNT(runProcess->processStatus) == 0) {//获取当前进程的任务数量
#endif
        runProcess->processStatus &= ~OS_PROCESS_STATUS_RUNNING;
        if ((runProcess->threadNumber > 1) && !(runProcess->processStatus & OS_PROCESS_STATUS_READY)) {
            runProcess->processStatus |= OS_PROCESS_STATUS_PEND;
        }
#if (LOSCFG_KERNEL_SMP == YES)
    }
#endif
    LOS_ASSERT(!(newProcess->processStatus & OS_PROCESS_STATUS_PEND));//断言进程不是阻塞状态
    newProcess->processStatus |= OS_PROCESS_STATUS_RUNNING;//设置进程状态为运行状态

    if (OsProcessIsUserMode(newProcess)) {//用户模式下切换进程mmu上下文
        LOS_ArchMmuContextSwitch(&newProcess->vmSpace->archMmu);//新进程->虚拟空间中的->Mmu部分入参
    }

#ifdef LOSCFG_KERNEL_CPUP
    OsProcessCycleEndStart(newProcess->processID, OS_PROCESS_GET_RUNTASK_COUNT(runProcess->processStatus) + 1);
#endif /* LOSCFG_KERNEL_CPUP */

    OsCurrProcessSet(newProcess);//将进程置为 g_runProcess

    if ((newProcess->timeSlice == 0) && (newProcess->policy == LOS_SCHED_RR)) {//为用完时间片或初始进程分配时间片
        newProcess->timeSlice = OS_PROCESS_SCHED_RR_INTERVAL;//重新分配时间片,默认 20ms
    }
}

这里再啰嗦一句,系列篇中已经说了两个上下文切换了,一个是这里的因进程切换引起的mmu上下文切换,还一个是因task切换引起的CPU的上下文切换,还能想起来吗?

第二:是加载ELF文件的时候会切换mmu,一个崭新的进程诞生了,具体将在 鸿蒙内核源码分析(启动加载篇) 会细讲,敬请关注系列篇动态。

其余是虚拟空间回收和刷新空间的时候,这个就自己看代码去吧。

mmu是如何快速的通过虚拟地址找到物理地址的呢?答案是:TLB ,注意上面还有个TTB,一个是寄存器, 一个是cache,别搞混了。

TLB(translation lookaside buffer)

TLB是硬件上的一个cache,因为页表一般都很大,并且存放在内存中,所以处理器引入MMU后,读取指令、数据需要访问两次内存:首先通过查询页表得到物理地址,然后访问该物理地址读取指令、数据。为了减少因为MMU导致的处理器性能下降,引入了TLB,可翻译为“地址转换后援缓冲器”,也可简称为“快表”。简单地说,TLB就是页表的Cache,其中存储了当前最可能被访问到的页表项,其内容是部分页表项的一个副本。只有在TLB无法完成地址翻译任务时,才会到内存中查询页表,这样就减少了页表查询导致的处理器性能下降。详细看

照着图说吧,步骤是这样的。

1. 图中的page table的基地址就是上面TTB寄存器值,整个page table非常大,有多大接下来会讲,所以只能存在内存里,TTB中只是存一个开始位置而已。

2. 虚拟地址是程序的地址逻辑地址,也就是喂给CPU的地址,必须经过MMU的转换后变成物理内存才能取到真正的指令和数据。

3. TLB是page table的迷你版,MMU先从TLB里找物理页,找不到了再从page table中找,从page table中找到后会放入TLB中,注意这一步非常非常的关键。因为page table是属于进程的会有很多个,而TLB只有一个,不放入就会出现多个进程的page table都映射到了同一个物理页框而不自知。一个物理页同时只能被一个page table所映射。但除了TLB的唯一性外,要做到不错乱还需要了一个东西,就是进程在映射层面的唯一标识符 - asid。

asid寄存器

asid(Adress Space ID) 进程标识符,属于CP15协处理器的C13号寄存器,ASID可用来唯一标识进程,并为进程提供地址空间保护。当TLB试图解析虚拟页号时,它确保当前运行进程的ASID与虚拟页相关的ASID相匹配。如果不匹配,那么就作为TLB失效。除了提供地址空间保护外,ASID允许TLB同时包含多个进程的条目。如果TLB不支持独立的ASID,每次选择一个页表时(例如,上下文切换时),TLB就必须被冲刷(flushed)或删除,以确保下一个进程不会使用错误的地址转换。

TLB页表中有一个bit来指明当前的entry是global(nG=0,所有process都可以访问)还是non-global(nG=1,only本process允许访问)。如果是global类型,则TLB中不会tag ASID;如果是non-global类型,则TLB会tag上ASID,且MMU在TLB中查询时需要判断这个ASID和当前进程的ASID是否一致,只有一致才证明这条entry当前process有权限访问。

看到了吗?如果每次mmu上下文切换时,把TLB全部刷新已保证TLB中全是新进程的映射表,固然是可以,但效率太低了!!!进程的切换其实是秒级亚秒级的,地址的虚实转换是何等的频繁啊,怎么会这么现实呢,真实的情况是TLB中有很多很多其他进程占用的物理内存的记录还在,当然他们对物理内存的使用权也还在。所以当应用程序 new了10M内存以为是属于自己的时候,其实在内核层面根本就不属于你,还是别人在用,只有你用了1M的那一瞬间真正1M物理内存才属于你,而且当你的进程被其他进程切换后,很大可能你用的那1M也已经不在物理内存中了,已经被置换到硬盘上了。明白了吗?只关注应用开发的同学当然可以说这关我鸟事,给我的感觉有就行了,但想熟悉内核的同学就必须要明白,这是每分每秒都在发生的事情。

最后一个函数留给大家,asid是如何分配的?

/* allocate and free asid */
status_t OsAllocAsid(UINT32 *asid)
{
    UINT32 flags;
    LOS_SpinLockSave(&g_cpuAsidLock, &flags);
    UINT32 firstZeroBit = LOS_BitmapFfz(g_asidPool, 1UL << MMU_ARM_ASID_BITS);
    if (firstZeroBit >= 0 && firstZeroBit < (1UL << MMU_ARM_ASID_BITS)) {
        LOS_BitmapSetNBits(g_asidPool, firstZeroBit, 1);
        *asid = firstZeroBit;
        LOS_SpinUnlockRestore(&g_cpuAsidLock, flags);
        return LOS_OK;
    }

    LOS_SpinUnlockRestore(&g_cpuAsidLock, flags);
    return firstZeroBit;
}

如果想更深入的学习 OpenHarmony 开发的内容,可以参考以下学习文档:

OpenHarmony 开发环境搭建:https://qr18.cn/CgxrRy

《OpenHarmony源码解析》:https://qr18.cn/CgxrRy

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……

系统架构分析:https://qr18.cn/CgxrRy

  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

OpenHarmony 设备开发学习手册:https://qr18.cn/CgxrRy

OpenHarmony面试题(内含参考答案):https://qr18.cn/CgxrRy

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing

    标签:__,鸿蒙,TLB,源码,寄存器,进程,table,newProcess,虚拟内存
    From: https://blog.csdn.net/m0_70748458/article/details/139773106

相关文章

  • 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念
    理解并发概念并发(Concurrent):多个线程在单个核心运行,同一时间只能一个线程运行,内核不停切换线程,看起来像同时运行,实际上是线程被高速的切换.通俗好理解的比喻就是高速单行道,单行道指的是CPU的核数,跑的车就是线程(任务),进程就是管理车的公司,一个公司可以有很多台车.并发......
  • 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数
    汇编如何传复杂的参数?汇编基础篇中很详细的介绍了一段具有代表性很经典的汇编代码,有循环,有判断,有运算,有多级函数调用。但有一个问题没有涉及,就是很复杂的参数如何处理?在实际开发过程中函数参数往往是很复杂的参数,(比如结构体)汇编怎么传递呢?先看一段C语言及汇编代码,......
  • 基于Python+Django的高校实验室管理系统设计与实现(源码+数据库+讲解)
    文章目录前言详细视频演示项目运行截图技术框架后端采用Django框架前端框架Vue可行性分析系统测试系统测试的目的系统功能测试数据库表设计代码参考数据库脚本为什么选择我?获取源码前言......
  • 基于Python+Django的高校成绩分析系统设计与实现(源码+数据库+讲解)
    文章目录前言详细视频演示项目运行截图技术框架后端采用Django框架前端框架Vue可行性分析系统测试系统测试的目的系统功能测试数据库表设计代码参考数据库脚本为什么选择我?获取源码前言......
  • C#贪吃蛇小游戏源码
    usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSystem.Drawing;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;usingSystem.Windows.Forms;namespace贪吃蛇游戏{publicp......
  • 基于SpringBoot+Vue+uniapp的社区门诊管理系统的详细设计和实现(源码+lw+部署文档+讲
    文章目录前言详细视频演示具体实现截图技术栈后端框架SpringBoot前端框架Vue持久层框架MyBaitsPlus系统测试系统测试目的系统功能测试系统测试结论为什么选择我代码参考数据库参考源码获取前言......
  • 基于SpringBoot+Vue+uniapp的校园二手交易平台的详细设计和实现(源码+lw+部署文档+讲
    文章目录前言详细视频演示具体实现截图技术栈后端框架SpringBoot前端框架Vue持久层框架MyBaitsPlus系统测试系统测试目的系统功能测试系统测试结论为什么选择我代码参考数据库参考源码获取前言......
  • 1950 Springboot汽修技能点评系统idea开发mysql数据库APP应用java编程计算机网页源码m
    一、源码特点 springboot汽修技能点评系统是一套完善的信息系统,结合springboot框架和bootstrap完成本系统,对理解JSPjava编程开发语言有帮助系统采用springboot框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用B/S模式开发。前段主要技术bootstrap.cssjquery......
  • LLM大模型: FlagEmbedding-BiEncoderModel原理和源码解析
    NLP常见的任务之一是高效检索:在大规模语料库中快速检索与查询相关的段落或文档;用户输入query,要在语料库中找到语义最接近、最匹配的回答!此外,还有文本分类、情感分析等下游任务需要先把文本的embedding求出来,这些功能都能通过"双塔结构"(Bi-Encoder)实现!核心思路很简单:用两个不同......
  • springboot小型超市商品展销系统-计算机毕业设计源码01635
    摘 要科技进步的飞速发展引起人们日常生活的巨大变化,电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流,人类发展的历史正进入一个新时代。在现实运用中,应用软件的工作规则和开发步骤,采用Springboot框架建......