首页 > 系统相关 >linux驱动-17-input子系统

linux驱动-17-input子系统

时间:2024-04-04 18:24:52浏览次数:27  
标签:17 keyinputdev 按键 dev KEY linux input EV

1 input 子系统介绍

按键、鼠标、键盘、触摸屏等都属于输入(input)设备,Linux 内核为此专门做了一个叫做 input子系统的框架来处理输入事件。
image
input 子系统分为 input 驱动层、input 核心层、input 事件处理层,最终给用户空间提供可访问的设备节点。
驱动层:输入设备的具体驱动程序,比如按键驱动程序,向内核层报告输入内容。
核心层:承上启下,为驱动层提供输入设备注册和操作接口。通知事件层对输入事件进行处理。
事件层:主要和用户空间进行交互。

1.1 input 驱动编写流程

drivers/input/input.c就是input子系统的核心层,此文件里面有如下代码:

struct class input_class = {
	.name = "input",
	.devnode = input_devnode,
};
.....
static int __init input_init(void)
{
	int err;
	err = class_register(&input_class);
	if (err) {
		pr_err("unable to register input_dev class\n");
		return err;
	}

	err = input_proc_init();
	if (err)
		goto fail1;

	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
		INPUT_MAX_CHAR_DEVICES, "input");
	if (err) {
		pr_err("unable to register char major %d", INPUT_MAJOR);
		goto fail2;
	}

	return 0;

fail2: input_proc_exit();
fail1: class_unregister(&input_class);
	return err;
}

注册一个 input 类,这样系统启动以后就会在/sys/class 目录下有一个 input 子目录:
image
创建proc/input信息,申请主设备号为 INPUT_MAJOR, INPUT_MAJOR 定义在 include/uapi/linux/major.h:
#define INPUT_MAJOR 13
因此,input 子系统的所有设备主设备号都为 13,我们在使用 input 子系统处理输入设备的时候就不需要去注册字符设备了,我们只需要向系统注册一个 input_device 即可。

1.1.1 注册 input_dev

使用 input 子系统的时候我们只需要注册一个 input 设备即可,input_dev 结构体表示 input设备,此结构体定义在 include/linux/input.h:

struct input_dev {
	const char *name;
	const char *phys;
	const char *uniq;
	struct input_id id;
	unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
	unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; /* 事件类型的位图 */
	unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; /* 按键值的位图 */
	unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; /* 相对坐标的位图 */ 
	unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; /* 绝对坐标的位图 */
	unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; /* 杂项事件的位图 */
	unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; /*LED 相关的位图 */
	unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];/* sound 有关的位图 */
	unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; /* 压力反馈的位图 */
	unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; /*开关状态的位图 */
	.....
	bool devres_managed;
};

evbit 表示输入事件类型:

#define EV_SYN 0x00 /* 同步事件 */
#define EV_KEY 0x01 /* 按键事件 */
#define EV_REL 0x02 /* 相对坐标事件 */
#define EV_ABS 0x03 /* 绝对坐标事件 */
#define EV_MSC 0x04 /* 杂项(其他)事件 */
#define EV_SW 0x05 /* 开关事件 */
#define EV_LED 0x11 /* LED */
#define EV_SND 0x12 /* sound(声音) */
#define EV_REP 0x14 /* 重复事件 */
#define EV_FF 0x15 /* 压力事件 */
#define EV_PWR 0x16 /* 电源事件 */
#define EV_FF_STATUS 0x17 /* 压力状态事件 */

evbit、keybit、relbit 等等都是存放不同事件对应的值。比如我们本章要使用按键事件,因此要用到 keybit,keybit 就是按键事件使用的位图,Linux 内核定义了很多按键值:

#define KEY_RESERVED 0
#define KEY_ESC 1
#define KEY_1 2
#define KEY_2 3
#define KEY_3 4
#define KEY_4 5
#define KEY_5 6
#define KEY_6 7
#define KEY_7 8
#define KEY_8 9
#define KEY_9 10
#define KEY_0 11
......
#define BTN_TRIGGER_HAPPY39 0x2e6
#define BTN_TRIGGER_HAPPY40 0x2e7

我们可以将开发板上的按键值设置为任意一个,比如就叫KEY_0。

申请input内存:
struct input_dev *input_allocate_device(void);

释放input内存:
void input_free_device(struct input_dev *dev);

注册input设备:
int input_register_device(struct input_dev *dev);

注销input设备:
void input_unregister_device(struct input_dev *dev);

1.1.1.1 input_dev 注册过程

struct input_dev *inputdev; /* input 结构体变量 */

static int __init xxx_init(void)
{
	inputdev = input_allocate_device(); /* 申请 input_dev */
	inputdev->name = "test_inputdev"; /* 设置 input_dev 名字 */

	 /*********第一种设置事件和事件值的方法***********/
	 __set_bit(EV_KEY, inputdev->evbit); /* 设置产生按键事件 */
	 __set_bit(EV_REP, inputdev->evbit); /* 重复事件 */
	 __set_bit(KEY_0, inputdev->keybit); /*设置产生哪些按键值 */
	 /************************************************/
	 
	 /*********第二种设置事件和事件值的方法***********/
	 keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) |
	T_MASK(EV_REP);
	 keyinputdev.inputdev->keybit[BIT_WORD(KEY_0)] |=
	T_MASK(KEY_0);
	 /************************************************/

	 /*********第三种设置事件和事件值的方法***********/
	 keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) |
	T_MASK(EV_REP);
	 input_set_capability(keyinputdev.inputdev, EV_KEY, KEY_0);
	 /************************************************/
	 
	 input_register_device(inputdev);
	 return 0;
 }

 static void __exit xxx_exit(void)
 {
	 input_unregister_device(inputdev); /* 注销 input_dev */
	 input_free_device(inputdev); /* 删除 input_dev */
 }

1.1.2 中断上报输入事件

当输入设备中断到来,我们需要上报input输入事件给linux内核的input核心层,比如按键:我们需要在按键中断处理函数,或者消抖定时器中断函数中将按键值上报给 Linux 内核,这样 Linux 内核才能获取到正确的输入值。
不同的事件,上报事件的 API 函数不一样:
input_event:

void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
/*
	dev:需要上报的 input_dev。
	type: 上报的事件类型,比如 EV_KEY。
	code:事件码,也就是我们注册的按键值,比如 KEY_0、KEY_1 等等。
	value:事件值,比如 1 表示按键按下,0 表示按键松开。
*/

当然linux系统帮我们也封装了一层api去使用:
input_report_key:

static inline void input_report_key(struct input_dev *dev,unsigned int code, int value)
{
 input_event(dev, EV_KEY, code, !!value);
}

同样的还有一些其他的事件上报函数:

void input_report_rel(struct input_dev *dev, unsigned int code, int value)
void input_report_abs(struct input_dev *dev, unsigned int code, int value)
void input_report_ff_status(struct input_dev *dev, unsigned int code, int value)
void input_report_switch(struct input_dev *dev, unsigned int code, int value)
void input_mt_sync(struct input_dev *dev)

我们上报事件以后还需要使用 input_sync 函数来告诉 Linux 内核 input 子系统上报结束,input_sync 函数本质是上报一个同步事件:
void input_sync(struct input_dev *dev);
举个例子,按键中断服务函数如下:

/* 用于按键消抖的定时器服务函数 */
void timer_function(unsigned long arg)
{
	unsigned char value;
	value = gpio_get_value(keydesc->gpio); /* 读取 IO 值 */
	if(value == 0){ /* 按下按键 */
		/* 上报按键值 */
		input_report_key(inputdev, KEY_0, 1); /* 最后一个参数 1,按下 */
		input_sync(inputdev); /* 同步事件 */
	} else { /* 按键松开 */
		input_report_key(inputdev, KEY_0, 0); /* 最后一个参数 0,松开 */
		input_sync(inputdev); /* 同步事件 */
	}
}

1.1.3 input_event 结构体

include/uapi/linux/input.h 文件中:
image

type:事件类型,比如 EV_KEY,表示此次事件为按键事件,此成员变量为 16 位。
code:事件码,比如在 EV_KEY 事件中 code 就表示具体的按键码,如:KEY_0、KEY_1等等这些按键。此成员变量为 16 位。
value:值,比如 EV_KEY 事件中 value 就是按键值,表示按键有没有被按下,如果为 1 的话说明按键按下,如果为 0 的话说明按键没有被按下或者按键松开了

input_envent 这个结构体非常重要,用户态的应用程序也是通过 input_event 来获取到具体的输入事件或相关的值,比如按键值等。

2 input子系统示例

还是以之前的按键来举例,利用input子系统来做一个按键驱动程序:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/input.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/of_irq.h>
#include <linux/irq.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define KEYINPUT_CNT		1			/* 设备号个数 	*/
#define KEYINPUT_NAME		"keyinput"	/* 名字 		*/
#define KEY0VALUE			0X01		/* KEY0按键值 	*/
#define INVAKEY				0XFF		/* 无效的按键值 */
#define KEY_NUM				1			/* 按键数量 	*/

struct irq_keydesc {
	int gpio;								/* gpio */
	int irqnum;								/* 中断号     */
	unsigned char value;					/* 按键对应的键值 */
	char name[10];							/* 名字 */
	irqreturn_t (*handler)(int, void *);	/* 中断服务函数 */
};

struct keyinput_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	struct device_node	*nd; /* 设备节点 */
	struct timer_list timer;/* 定义一个定时器*/
	struct irq_keydesc irqkeydesc[KEY_NUM];	/* 按键描述数组 */
	unsigned char curkeynum;				/* 当前的按键号 */
	struct input_dev *inputdev;		/* input结构体 */
};

struct keyinput_dev keyinputdev;

static irqreturn_t key0_handler(int irq, void *dev_id)
{
	struct keyinput_dev *dev = (struct keyinput_dev *)dev_id;

	dev->curkeynum = 0;
	dev->timer.data = (volatile long)dev_id;
	mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10));	/* 10ms定时 */
	return IRQ_RETVAL(IRQ_HANDLED);
}
void timer_function(unsigned long arg)
{
	unsigned char value;
	unsigned char num;
	struct irq_keydesc *keydesc;
	struct keyinput_dev *dev = (struct keyinput_dev *)arg;

	num = dev->curkeynum;
	keydesc = &dev->irqkeydesc[num];
	value = gpio_get_value(keydesc->gpio); 	/* 读取IO值 */
	if(value == 0){ 						/* 按下按键 */
		/* 上报按键值 */
		//input_event(dev->inputdev, EV_KEY, keydesc->value, 1);
		input_report_key(dev->inputdev, keydesc->value, 1);/* 最后一个参数表示按下还是松开,1为按下,0为松开 */
		input_sync(dev->inputdev);
	} else { 									/* 按键松开 */
		//input_event(dev->inputdev, EV_KEY, keydesc->value, 0);
		input_report_key(dev->inputdev, keydesc->value, 0);
		input_sync(dev->inputdev);
	}	
}
 int keyio_init(void)
{
	unsigned char i = 0;
	char name[10];
	int ret = 0;
	
	keyinputdev.nd = of_find_node_by_path("/key");
	if (keyinputdev.nd== NULL){
		printk("key node not find!\r\n");
		return -EINVAL;
	} 

	/* 提取GPIO */
	for (i = 0; i < KEY_NUM; i++) {
		keyinputdev.irqkeydesc[i].gpio = of_get_named_gpio(keyinputdev.nd ,"key-gpio", i);
		if (keyinputdev.irqkeydesc[i].gpio < 0) {
			printk("can't get key%d\r\n", i);
		}
	}
	
	/* 初始化key所使用的IO,并且设置成中断模式 */
	for (i = 0; i < KEY_NUM; i++) {
		memset(keyinputdev.irqkeydesc[i].name, 0, sizeof(name));	/* 缓冲区清零 */
		sprintf(keyinputdev.irqkeydesc[i].name, "KEY%d", i);		/* 组合名字 */
		gpio_request(keyinputdev.irqkeydesc[i].gpio, name);
		gpio_direction_input(keyinputdev.irqkeydesc[i].gpio);	
		keyinputdev.irqkeydesc[i].irqnum = irq_of_parse_and_map(keyinputdev.nd, i);
	}
	/* 申请中断 */
	keyinputdev.irqkeydesc[0].handler = key0_handler;
	keyinputdev.irqkeydesc[0].value = KEY_0;
	
	for (i = 0; i < KEY_NUM; i++) {
		ret = request_irq(keyinputdev.irqkeydesc[i].irqnum, keyinputdev.irqkeydesc[i].handler, 
		                 IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, keyinputdev.irqkeydesc[i].name, &keyinputdev);
		if(ret < 0){
			printk("irq %d request failed!\r\n", keyinputdev.irqkeydesc[i].irqnum);
			return -EFAULT;
		}
	}

	/* 创建定时器 */
	init_timer(&keyinputdev.timer);
	keyinputdev.timer.function = timer_function;

	/* 申请input_dev */
	keyinputdev.inputdev = input_allocate_device();
	keyinputdev.inputdev->name = KEYINPUT_NAME;
#if 0
	/* 初始化input_dev,设置产生哪些事件 */
	__set_bit(EV_KEY, keyinputdev.inputdev->evbit);	/* 设置产生按键事件          */
	__set_bit(EV_REP, keyinputdev.inputdev->evbit);	/* 重复事件,比如按下去不放开,就会一直输出信息 		 */

	/* 初始化input_dev,设置产生哪些按键 */
	__set_bit(KEY_0, keyinputdev.inputdev->keybit);	
#endif

#if 0
	keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
	keyinputdev.inputdev->keybit[BIT_WORD(KEY_0)] |= BIT_MASK(KEY_0);
#endif

	keyinputdev.inputdev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
	input_set_capability(keyinputdev.inputdev, EV_KEY, KEY_0);

	/* 注册输入设备 */
	ret = input_register_device(keyinputdev.inputdev);
	if (ret) {
		printk("register input device failed!\r\n");
		return ret;
	}
	return 0;
}
static int __init keyinput_init(void)
{
	keyio_init();
	return 0;
}
static void __exit keyinput_exit(void)
{
	unsigned int i = 0;
	del_timer_sync(&keyinputdev.timer);	/* 删除定时器 */
		
	for (i = 0; i < KEY_NUM; i++) {
		free_irq(keyinputdev.irqkeydesc[i].irqnum, &keyinputdev);
	}
	input_unregister_device(keyinputdev.inputdev);
	input_free_device(keyinputdev.inputdev);
}

module_init(keyinput_init);
module_exit(keyinput_exit);

2.1 定义input_dev

image

2.2 初始话input_dev

image

  1. input_allocate_device分配内存
  2. 设置事件和事件值,input_event类型是EV_KEY,键值KEY_0, evbit为EV_KEY | EV_REP
  3. 注册input设备

2.3 中断上报输入事件

image

2.4 释放input_dev

image

3 APP测试

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>
#include <linux/input.h>
static struct input_event inputevent;
int main(int argc, char *argv[])
{
	int fd;
	int err = 0;
	char *filename;

	filename = argv[1];

	if(argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	fd = open(filename, O_RDWR);
	if (fd < 0) {
		printf("Can't open file %s\r\n", filename);
		return -1;
	}

	while (1) {
		err = read(fd, &inputevent, sizeof(inputevent));
		if (err > 0) { /* 读取数据成功 */
			switch (inputevent.type) {


				case EV_KEY:
					if (inputevent.code < BTN_MISC) { /* 键盘键值 */
						printf("key %d %s\r\n", inputevent.code, inputevent.value ? "press" : "release");
					} else {
						printf("button %d %s\r\n", inputevent.code, inputevent.value ? "press" : "release");
					}
					break;

				/* 其他类型的事件,自行处理 */
				case EV_REL:
					break;
				case EV_ABS:
					break;
				case EV_MSC:
					break;
				case EV_SW:
					break;
			}
		} else {
			printf("读取数据失败\r\n");
		}
	}
	return 0;
}

当我们向 Linux 内核成功注册 input_dev 设备以后,会在/dev/input 目录下生成一个名为“eventX(X=0….n)”的文件,这个/dev/input/eventX 就是对应的 input 设备文件。

测试:
在加载 keyinput.ko 驱动模块之前,先看一下/dev/input 目录下都有哪些文件:
image
modprobe keyinput.ko 可以看到多一个input1,就是我们刚创建的设备节点:
image
运行app:
./keyinputApp /dev/input/event1
image
可以看出,当我们按下或者释放开发板上的按键以后都会在终端上输出相应的内容,提示我们哪个按键按下或释放了,在 Linux 内核中 KEY_0 为 11。
另外,我们也可以不用 keyinputApp 来测试驱动,可以直接使用 hexdump 命令来查看/dev/input/event1 文件内容,输入如下命令:
hexdump /dev/input/event1
这就是input_event 类型的原始事件数据值:
image
含义如下:
image
type 为事件类型,EV_KEY 事件值为 1,EV_SYN 事件值为0。因此第 1 行表示 EV_KEY 事件,第 2 行表示 EV_SYN 事件。code 为事件编码,也就是按键号,KEY_0 这个按键编号为 11,对应的十六进制为 0xb,因此第1 行表示 KEY_0 这个按键事件,最后的 value 就是按键值,为 1 表示按下,为 0 的话表示松开。
综上所述,上述原始事件值含义如下:
第 1 行,按键(KEY_0)按下事件。
第 2 行,EV_SYN 同步事件,因为每次上报按键事件以后都要同步的上报一个 EV_SYN 事件。
第 3 行,按键(KEY_0)松开事件。
第 4 行,EV_SYN 同步事件,和第 2 行一样。

4 Linux input子系统补充-Linux 自带按键驱动

Linux 内核也自带了 KEY 驱动,如果要使用内核自带的 KEY 驱动的话需要配置 Linux 内核,不过 Linux 内核一般默认已经使能了 KEY 驱动。

-> Device Drivers
	-> Input device support
		-> Generic input layer (needed for keyboard, mouse, ...) (INPUT [=y])
			-> Keyboards (INPUT_KEYBOARD [=y])
				->GPIO Buttons

image

选中以后就会在.config 文件中出现“CONFIG_KEYBOARD_GPIO=y”这一行,Linux 内核
就会根据这一行来将 KEY 驱动文件编译进 Linux 内核。Linux 内核自带的 KEY 驱动文件为
drivers/input/keyboard/gpio_keys.c,gpio_keys.c 采用了 platform 驱动框架,在 KEY 驱动上使用
了 input 子系统实现。

4.1 gpio_keys源码分析

image
image

要使用 Linux 内 核 自 带 的 按 键 驱 动 程 序 很 简 单 , 只 需 要 根 据Documentation/devicetree/bindings/input/gpio-keys.txt 这个文件在设备树中添加指定的设备节点即可,节点要求如下:

①、节点名字为“gpio-keys”。
②、gpio-keys 节点的 compatible 属性值一定要设置为“gpio-keys”。
③、所有的 KEY 都是 gpio-keys 的子节点,每个子节点可以用如下属性描述自己:
	gpios:KEY 所连接的 GPIO 信息。
	interrupts:KEY 所使用 GPIO 中断信息,不是必须的,可以不写。
	label:KEY 名字
	linux,code:KEY 要模拟的按键,也就是示例代码
④、如果按键要支持连按的话要加入 autorepeat。

打开 imx6ull-alientek-emmc.dts定义如下:

gpio-keys {
	compatible = "gpio-keys";
	#address-cells = <1>;
	#size-cells = <0>;
	autorepeat;
	key0 {
		label = "GPIO Key Enter";
		linux,code = <KEY_ENTER>;
		gpios = <&gpio1 18 GPIO_ACTIVE_LOW>;
	};
};

ALPHA 开发板 KEY 按键信息,名字设置为“GPIO Key Enter”,这里我们将开发板上的 KEY 按键设置为“EKY_ENTER”这个按键,也就是回车键,效果和键盘上的回车键一样。

4.1.1 gpio_keys_probe分析

image
可以看到就是对input子系统的调用封装,实例化了一个利用input子系统写的驱动程序。
调用 gpio_keys_get_devtree_pdata 函数从设备树中获取到 KEY 相关的设备节点信息。
使用 devm_input_allocate_device 函数申请 input_dev。
初始化 input_dev。
设置 input_dev 事件,这里设置了 EV_REP 事件.
调用 gpio_keys_setup_key 函数继续设置 KEY,此函数会设置 input_dev 的EV_KEY 事件已经事件码(也就是 KEY 模拟为哪个按键)。
调用 input_register_device 函数向 Linux 系统注册 input_dev。

4.1.1.1 gpio_keys_setup_key

image

调用 input_set_capability 函数设置 EV_KEY 事件以及 KEY 的按键类型,也就是 KEY 作为哪个按键?我们会在设备树里面设置指定的 KEY 作为哪个按键.

4.1.1.2 gpio_keys_irq_isr

当dts对应的按键按下后,中断进行响应,函数如下:
image
可以看到同理还是调用input_event, input_sync进行上报事件。

4.2 测试验证

烧录新的dtb和kernel进去,可以看出存在 event1 这个文件,这个文件就是 KEY 对应的设备文件,使用
hexdump 命令来查看/dev/input/event1 文件:
hexdump /dev/input/event1
image
大家如果发现按下 KEY 按键以后没有反应,那么请检查一下三方面:
①、是否使能 Linux 内核 KEY 驱动。
②、设备树中 gpio-keys 节点是否创建成功。
③、在设备树中是否有其他外设也使用了 KEY 按键对应的 GPIO,但是我们并没有删除掉这些外设信息。检查 Linux 启动 log 信息,看看是否有类似下面这条信息:
gpio-keys gpio_keys:Failed to request GPIO 18, error -16

标签:17,keyinputdev,按键,dev,KEY,linux,input,EV
From: https://www.cnblogs.com/fuzidage/p/18114268

相关文章

  • Kali Linux介绍
    KaliLinux是一个基于Debian的Linux发行版,主要用于数字取证和渗透测试。它是由OffensiveSecurity维护和资助的,每季度更新一次。KaliLinux最初是由OffensiveSecurity的MatiAharoni和DevonKearns通过重写BackTrack来完成的,而BackTrack也是他们之前编写的用于取证的Linux发行......
  • Metasploit Framework 6.4 (macOS, Linux, Windows) - 开源渗透测试框架
    MetasploitFramework6.4(macOS,Linux,Windows)-开源渗透测试框架Rapid7Penetrationtesting请访问原文链接:https://sysin.org/blog/metasploit-framework-6/,查看最新版。原创作品,转载请保留出处。作者主页:sysin.org世界上最广泛使用的渗透测试框架知识就是力量,尤......
  • 设备驱动-16-Linux 内核LED子系统
    1LED子系统介绍led子系统相关描述可在内核源码Documentation/leds/leds-class.txt了解。led子系统是一个简单的Linux子系统,在目录/sys/class/leds下展示该子系统设备,每个设备都有自己的属性:brightness:设置LED亮度,范围0~max_brightnessmax_brightness:最大亮度......
  • 在Linux中,如何查看和结束正在运行的进程?
    在Linux中,查看和结束正在运行的进程通常涉及到几个基础的命令行工具。以下是一些常用的方法:1.查看正在运行的进程:1.ps命令基本用法:ps可以显示当前终端会话的进程列表。ps显示所有进程:ps-e或ps-A显示系统中所有的进程。ps-e包含父进程ID(PPID)和进程树......
  • 在Linux中,进程和线程有何作用?
    在Linux操作系统中,进程和线程都扮演着关键角色,它们的设计目的是为了支持系统的并发性和资源共享,以及提高应用程序的性能和响应能力。进程的作用:资源隔离:进程是操作系统分配资源的基本单位,每个进程都有自己独立的地址空间,包括代码段、数据段、堆和栈,这样可以防止一个进程错误......
  • 【Linux】Ubuntu 文件权限管理
    Linux系统对文件的权限有着严格的控制,用于如果相对某个文件执行某种操作,必须具有对应的权限方可执行成功,这也是Linux有别于Windows的机制,也是基于这个权限机制,Linux可以有效防止病毒自我运行。因为运行的条件是必须要有运行的权限,而这个权限在Linux是用户所赋予的。文件权......
  • 在Linux中, 如何创建一个新用户和新组?
    在Linux中,创建新用户和新组的过程相对直接,主要通过命令行界面(CLI)完成。下面将详细解释如何执行这些操作:1.创建新用户在Linux中,可以使用useradd命令来创建新用户。该命令的基本语法是:useradd[选项]用户名其中,[选项]是可选的,用于指定用户的各种属性。一些常用的选项包括:-m......
  • 在Linux中,什么是家目录?如何更改用户的家目录?
    在Linux系统中,家目录(HomeDirectory)是分配给每个用户的个人目录,用于存储个人文件、配置文件、下载内容等。每个用户都有一个独特的家目录,通常位于/home目录下,其名称与用户的用户名相同。例如,用户john的家目录通常是/home/john。1.家目录的作用个人文件存储:用户可以在其家目录......
  • 在Linux中,文件和目录的权限有何作用以及如何修改?
    在Linux系统中,文件和目录的权限起着至关重要的作用,它们决定了哪些用户可以访问、修改或执行特定的文件或目录。这些权限确保了系统的安全性和稳定性,同时允许用户有效地管理他们的数据和资源。权限的作用:文件权限:读(r):允许用户查看文件的内容。写(w):允许用户修改文件的内容,包括添......
  • idea异常:java.nio.charset.MalformedInputException: Input length = 1
    先放图吧,一般idea设置成这样都能解决写在后面:MalformedInputException是格式错误输入异常,意思就是指你的项目、配置文件编码不统一,所以我们要统一成UTF-8。一般小项目,肯定按照上图设置就没问题了,大项目文件多,特别是读属性这块,如果排查都没问题的话,可以重启项目,或者clean一下。......